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ABSTRACT

The General Pickup and Delivery Problem with Timendldws is a broad
model enclosing a whole set of problems, in whidleet of vehicles has to satisfy a set
of transportation requests. Hence, a route is oactstd for each vehicle detailing
which requests to visit, the order of the visitsd dhe arrival and departure times for
each visit (scheduling the visits). All visits aperformed within specified time
windows, with the objective of minimizing the totmaveled distance by all vehicles,
but other objectives can be found.

While the General Pickup and Delivery Problem wvilitthe Windows has many
variants, all of which are classified as>-hard problems; which means, there was no
known polynomial time algorithm capable of prodgran optimal solution, at least for
large problem instances. As such, heuristic angheetristic methods were applied to
gainnear optimal solutions in reasonable running timeshis study, an online hybrid
metaheuristic based on Variable Neighborhood Sediaiu Search, and Guided Local
Search was created and tested on one variant ajetheral model (i.e. thBynamic
Pickup and Delivery Problem with Time Windows). Jtstudy was also concerned
with determining the effect of dynamically changitige hybrid’'s search parameters,
during the search, on solution quality and runringe, and the effect of changing the
hybrid’s neighborhood order on solution quality andning time. To achieve the aims
of this study, the online hybrid was tested agaprstblem instancebased on the
works of Christofides, Fisher, and Taillard (a taf30 data sets). It should be noted
that these sets are modified to include time wingloovfit this study. Furthermore, the
online hybrid was assessed based on the competitiab/sis concept, but not in the
exact sense due to the nature of the selectedgmnofdle.~-hard problem).

It was found that, fotarge problem instances, the dynamic change of search
parameters produced better solutions more oftehpagh there was no statistical
evidence to support this. However, dynamically ¢fiag the search parameters had no
obvious effect on the running time. Furthermore, tieighborhood order did not seem
to have an effect on the solution quality, butrinening time was obviously lower for a
specific neighborhood order, compared to all otbeters. As for the competitive
analysis, it was shown that the online hybrid wagable of producing almost as good
solutions as its offline algorithm counterpart. ¥as a good indication of how well
the developed hybrid could perform under dynamiedatoons.
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Chapter 1 1 Introduction

INTRODUCTION

1.1  Overview and problem statement

The General Pickup and Delivery Problem with Timenddws (GPDPTW) is a
generic model representing a whole class of problemwhich a fleet of vehicles is used to
satisfy a set of transportation requests. In da@aga route must be constructed for each
vehicle detailing which transportation requestsiit, and the order of the visits. Each visit
should be performed within specified time periotts. mathematical modeling terms, a
complete weighted digrapb = (N,E) (i.e. a graph in which every pair of distinct vegs is
connected by an edge, associated with a costhendettices are ordered pairs) consists of a
set of nodesN = {123...,n} representing locations, which are often associati¢hl revenues
rv; and time windowga,,b] during which a visit must be performed, and acfeédges
E={(i,j)]i,jON} representing arcs connecting the locations; edygesassociated with
weights detailing the cost, distance, or traveletimcurred upon traversing them. A fleet of
vehiclesv ={k}, k =1,...,m is used to transport goods from one location &dther, usually
from a central depot to customer locations, but ih@ot necessarily the case. Vehicles can
be homogeneous in terms of capagjtytraveling costsj, and compatibility, or they can be
heterogeneous; the compatibility issue is concewittdthe vehicle’s ability to serve specific

customer requests.

The solution to a vehicle routing problem with timéndows is a routing plan (a
sequence), ={n,;,n,,n,..n;} for each vehicle specifying the locations to vitig order of the
visits, and the arrival and departure times foheasit (scheduling visits). The solution must
satisfy all problem constraints. Finally, an objeetfunction to be optimized is used to guide

the search for.a solution, usually the objectiva isost function to be minimized (traveling
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Chapter 1 2 Introduction

cost, distance, or time, number of vehicles usesponse time... etc.), it may be a service
level function to be maximized (number of custons®s/ed, revenue generated... etc.), or a
combined weighted function (minimizing travelingst@and number of vehicles used). See

figure 1.

Vehicle 2, route 2

y

Depot

F»

Vehicle 3, route

Vehicle 1, route

Figurel. Thevehicle routing problel

1.2  Importance of the study and area of application
Vehicle routing models can be used to solve margt hiée applications some

examples include but are not limited to: pickup aselivery of courier mail parcels,
transportation of handicapped / elderly peopleating emergency medical service facilities,
and dispensing salt or grit on snow-covered roAdswith all other models, not all problem
characteristics can be captured. However, some Is\ade closer to reality than others, the
difference being in the constraints added, relaxedemoved from the general model, and
therefore creating a problem variant, in orderttike a balance between representing reality
and solving the model with the given resources. (&ighin reasonable time). The most
common problem variants are: the Capacitated Pickugh Delivery Problem (CPDP) in

which different vehicles have different capacityilis, Pickup and Delivery Problem with
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Chapter 1 3 Introduction

Time Windows (PDPTW) in which transportation regsesust be satisfied within specific
time periods, and the Vehicle Routing Problem (VRPYhich vehicles have fixed starting
and ending locations, usually at a central deptiteOproblem constraints are: precedence
and coupling constraints (a pickup request mussdrged before the delivery request and
both must be done by the same vehicle), heterogenéleet (vehicles have different
capacities, speed, traveling costs...etc.), multietiegRP (vehicles are dispatched from
multiple centers and each center serves a certogrgphical area), vehicle compatibility
constraint (certain visits require certain vehidleperform the service, a common example is
technician/repairman dispatching), and fixed orroptarting / ending locations for vehicles

(not all vehicles are required to begin / finishitiroutes at a fixed location like the depot).

When some problem variant is used to model a ifeahpplication, two major issues
must be addressed: the availability of input infation, and the certainty of the information.
The availability of input information deals with eéhtime when all needed information
becomes accessible to the search algorithm. Infimm&an be known entirely before the
search begins (i.e. planning the routes), in wiate the problem is considered static and the
solution found will be the only solution executeat that problem, or, on the other hand,
information can be known partially before the shdvegins and only an initial solution can
be found (based on the partial information avadad that time), as the remaining part of
information becomes available the initial solutioust be modified to accommodate such
new input if possible; hence, the solutidynamically changes whenever new information
appears and the problem is considered dynamic. dther major issue, certainty of
information, deals with the variability of avail@binformation. At one end, information is
known for certain and can not vary (i.e. deterntiojs and at the other end, information is

not known for certain and can vary (i.e. stochaslibe simplest example is the travel times,
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Chapter 1 4 Introduction

they can be assumed to be constant, or, if oneewisth model a more practical situation,
travel times should be random variables. With timatind, any problem variant can be
deterministic or stochastic and, at the same tibee,static or dynamic. As expected, a
stochastic dynamic problem is harder than a detestic static problem and is closer to

modeling real life scenarios.

1.3  Objectives

Given the vast number of problems that can be nealdehe focus of this work is on
the dynamic deterministic pickup and delivery pesbl with time windows; the area of
application is the courier mail delivery in whicimall parcels are picked up from one
location and delivered to another on the same wgrllay. The model will be solved using a
hybrid local search metaheuristic; specificallye tibjectives are three fold:

1. Create a hybrid metaheuristic to solve the dyngiakup and delivery problem with
time windows; the hybrid is based on Tabu Searchid€l Local Search, and
Variable Neighborhood Search. A brief on these wasghis in the Methodology
chapter.

2. Investigate the effect of changing the neighborhooder on solution quality and
solution speed (in the Variable Neighborhood Seawstiext).

3. Investigate the effect of dynamically changing sbhgparameters on solution quality

and solution speed (in the Tabu Search and GuidedllSearch context).

1.4  Outline
The remainder of this study is organized as followlapter 2 overviews the
theoretical background needed and previous worliterature; section 2.1 overviews

optimization problems in general, and specifiesalvhiype is used in this study, section 2.2
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Chapter 1 5 Introduction

discusses search algorithms and their classifitatisection 2.3 presents the related topics
from the computational complexity theory, sectiod Zompares online optimization to
offline optimization, and how competitive analysssused as a performance measure for
online algorithms, section 2.5 classifies the ajgtion area of this study (i.e. the dynamic
pickup and delivery problem with time windows), apdints out its major difficulties,
section 2.6 gives a brief about solution approached finally, section 2.7 reviews the most
important work in literature, and specifies whaststudy adds along with the mathematical
model used to do so. Chapter 3 overviews the metaiies used and the experimental
methodology followed; section 3.1 specifies theusoh approach followed in this study,
section 3.2 presents the hybrid metaheuristic used,section 3.3 lays out the experimental
procedure for this study. Chapter 4 validates andudses the results. And finally, chapter 5

concludes this study and recommends future extessio
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Chapter 2 6 Literature review

LITERATURE REVIEW

2.1  Optimization problems

The term optimization, or mathematical programmis@ field of mathematics
concerned with systematically selecting valuesréal or integer variables such that a
real function, called an objective function, is miized or maximized. The variables
must be chosen from a specified set known as thsildie region or search space;

hence, optimization problems are considesearch problems

Definition 2.1 The optimization problem (Paepe, 200
An optimization problent] is a three-tuplel(S, ) such that:
» | isthe set of the instances fpy.
* Given an instancend |, § denotes the set of feasible solutions. of

* Given an instance O I, f; is the objective function that attributes to each

feasible solutionx of I a real numbef; (x), the so-called objective value xf

The goal is to determine if, for a given an ins&and] |, there is a feasible
solution, and if so, to find the feasible solutittbat has the smallest, or largest,
objective function value amongst all feasible sohs; that is, a feasible solutiott

such thatf; (x*) = min/max {f (x) : x0O S} .

The major subfields of optimization are: linear gmamming, non linear
programming, integer programming, mixed integer gpaoming, dynamic
programming, stochastic programming, and many ethEris study focuses on a class

of mixed integer programming called combinatoriptimization.
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Chapter 2 7 Literature review

Definition 2.2 Mixed Integer Program (Nemhauser @vaolsey, 1999)

min/maxcx+hy: Ax+Gy<b,x0Z", yOR?) .. (1)

WhereZ is the set of nonnegative integral n-dimensiomaiters,R is the set of
nonnegative real p-dimensional vectors, andndy are the decision variables. The
problem is called a mixed integer program becatis®ntains both integer and real
variables. Aninstance of the problem is specified by the matrices / wext
c(@xn),h@x p), Amxn),G(mx p), andb(mx1). The set S={x0Zz] yOR!:Ax+Gy<h} is
called thefeasible regionor search spacgea pair(x,y)OS is called aeasible solution
the functionz = cx+ hy is called arobjective functionand a feasible solutiogx*, y*) for

which  the objective function is as small / large agpossible

(i.e.cx* +hy* < cx+hyO(x,y) 0S) is called anoptimal solution It is possible to have a

problem with no optimal solution, this occurs wtedther the problem has no feasible
solutions, or the constraints do not prevent imprgvthe value of the objective

function indefinitely in the direction of one or meoof the variables (increasing or
decreasing); thus, solving an instance of a mixgelger programming problem means

finding an optimal solution, or showing that itagher infeasible or unbounded.

While there is no generally agreed upon definitiof combinatorial
optimization, it can be stated that combinatorigtiraization is a part of integer
programming that is concerned with the arrangengmotiping, ordering, or selection
of discrete objects (decision variables) from atdirset (search space), such that an
objective function is minimized or maximized. Thiboge mathematical formulation

also holds for combinatorial optimization.
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Chapter 2 8 Literature review

2.2 Algorithms

Given an optimization problem the question becorftesw to find the optimal
solution.” One needs a search strategy that sysieatia explores the search space and
finds the optimal solution, randomly selecting fbles solutions from the search space
will simply not do; it requires a lot of time anketre is no guarantee that the optimal

solution will be found. The search strategy is knas the search algorithm.

Definition 2.3 Search Algorithm (Paepe, 2002)
An algorithmA for an optimization problem is a general stept®aprocedure that, on

every instance, outputs a feasible solufigy)0S, or outputs that it cannot find a

feasible solution. Search algorithms can be broatigsified as either informed or

uninformed algorithms.

An uninformed algorithm, also known as brute-fossarch, is a very general
search strategy that systematically enumeratgmatiible solutions in the search space,
and checks them against the problem's statemejecfode function and constraints).
By doing so, it guarantees finding an optimal dohutif one exists. However, when the
search space is large, which is common for mangtiged problems, fully enumerating
the solutions will take a very long time; considlee example of arranging 10 items,
there are 3,628,800 (10!) different ways to dowgbich can be fully explored within
less than one second using an average computbe groblem is to arrange 15 items,
there will be about 1.3*18 possible solutions, which will take a few minutescheck
on a computer; however, if the input to the problaoreases to 20 items, there will be
about 2.4*16® possible solutions to explore which will take abdQ,000 years! All of

this assumes that the computer has all the sokitieady to be tested and that no
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Chapter 2 9 Literature review

solutions have to be generated. The point of thisoi show how the search space
increases dramatically as the size of the problgmtiincreases; this is known as the

combinatorial explosion

An informed algorithm, on the other hand, uses sbmgristic information (a
heuristicis a Latin word meaning "to find" and can be thaugf as an educated guess,
a rule of thumb, a judgment call... etc.) to guide #earch, and reduce the size of the
search space; hence, it requires much less tinmekthde-force search. Nevertheless, it
is not concerned with finding an optimal soluti@amy feasible solution would do. In
other words, a heuristic algorithm compromises tsmhuquality for faster running
times. An example of heuristic information that da used to solve an optimization
problem is the “shortest processing time” heuristsed in scheduling; consider the
problem of scheduling jobs on a machine with thpaive of minimize penalties for
late deliveries, one way to solve this problenoisvork on jobs with shorter processing
times first, then on jobs with longer processingds, this way more jobs will be
finished in a work shift; while this approach maffeo a good solution, it is not
necessary the optimal solution; specific penaltst€dor each job must be considered.
The point is that using heuristics does not guaeafiinding an optimal solution, nor
does it produce consistent results for differemtbfgm instances, still, it can produce

good solutions in a short time.

Yet another classification, that is relevant tostktudy, is the deterministic
versus nondeterministic (randomized) algorithms.déterministic algorithm is an
algorithm that, given a specific input, always prods the same output, and the

machine used to execute this algorithm will alwggsthrough the same sequence of
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Chapter 2 10 Literature review

states (a state describes what a machine is doiagparticular instant of time), and
such states are predetermined for each input. Hemvewn many applications
deterministic algorithms are very slow and impreadii for example given a list of
elements of which half are labeled with the lefieaind the remaining half are labeled
with the letterB, and it is required to find any element labeled\adsing an algorithm
that examines each element, and assuming thate®slabe sorted first, it will take n/2
operations to find the first A-labeled element, dodlarge values of n it will take a
long time. In fact, for any deterministic algorithome can pass a problem instance that
will cause the deterministic algorithm to performthe worst possible manner. On the
other hand, if we were to check the elements ataim then we will quickly find an A-
labeled element with high probability, regardledshow the problem instance is
presented. A nondeterministic algorithm uses sooneda random numbers as part of
its input (or execution) and therefore producesaadom output (random variable).

Such classification will be used to explain theaspt of competitive analysis later on.

2.3 Computational complexity theory

Whether an informed or an uninformed algorithm ised: to solve an
optimization problem, one seeks to find, and use,“tnost efficient” algorithm for a
given problem. Broadly speaking, the efficiencyasf algorithm is measured by the
resources needed by the algorithm to solve west-caseproblem instance. The
branch of computer science that is concerned with problem is known as the
computational complexity theory, it is not to benficsed with computability theory
which is concerned with determining if a problenm ¢z solved or not, regardless of
the resources needed. The most common resourceéscleyg an algorithm are time and

space.

www.manaraa.com

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Chapter 2 11 Literature review

The space complexity function simply measures theoumt of computer
memory required by the algorithm. On the other hahd time complexity function
expresses time requirements by giving, for eaclsipesinput length (i.e. the number
of bits required to encode an input), the largesbant of time needed by the most
efficient algorithm to solve a problem instancetlddt size (Johnson and Garey, 1979).
Of course, this function is not well-defined urdile fixes the input encoding scheme,
and the computer model used. This is why the Bigdiation was created; it is a
standard approach for estimating, and comparimgctimplexity of algorithms, in spite
of the encoding scheme or computer model usedomlyerequirement is the input size

of the problem.

For example, if a problem has an input size ahd it takes an algorithm a total
of 2n steps to reach a solution, we say that the coriplekthe algorithm is a function
of n; whether it is2n or 3n + 9 does not really matter, what matters is that the
complexity is proportional ta notn? or n® (i.e. it is in the “order” of). Using the Big
O notation, its complexity is written &3(n). Suppose a complexity function 3s° +
2rf + 12, its Big O notation would b®(n®) as the fastest growing term? will

overwhelm all other terms whenis large enough (Kreyszig, 1999).

It should be noted, however, that if, for example algorithm has a complexity
of O(n?), then at least one problem instance of size rstéti@ much time to solve, not
all problem instances. In fact, most problem instésnwill take much less time.
Formally speaking, a functioffn) is in the order of another functi@{n) (denoted as

f(n) = O(g(n)) whenever there exists a constansuch that|f(n)<cg(n) for large

positive values ofn. A polynomial time algorithmis defined as one whose time
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Chapter 2 12 Literature review

complexity function, for some polynomial functigm is O(p(n)) while an algorithm
whose time complexity function can not be boundgd lpolynomial function, is called
anexponential time algorithmrhus, a problem that can not be solved by a polyal

time algorithm is considerddtractable for large input sizes.

As mentioned earlier, optimization problems (andnbmatorial optimization
problems) are considered search problems; for saatch problem one can associate a
decision problem which consists of the originalrsegroblem, the three-tuplg G, ),
and an additional input parameter known asbihiend(B); however, the question about
a decision problem is not what the optimal soluigrbut rather about whether or not
there exists a solutior O § such thatf(x) < B, for a given instancé, which is
answered with a simple yes or no. Obviously, sgvthe search problem entails
solving the corresponding decision problem, butdpposite is not necessarily true. A
decision problem can not be harder than the casretipg search problem; it can be as
hard as the search problem, but never harder. fidnerdf a decision problem can be

proved to be intractable, its corresponding seproblem is also intractable.

One can classify, or group, computational problamd algorithms with related
complexities into what is known asmplexity classe§ he theory ofyp-completeness,
which is a part of the computational complexity dhe differentiates between two
complexity classes; and~np. Of course there are many other classes, but dresine
ones that are relevant. To understand how problmslassified as or ~P, consider

the subset sum problem, which is this: for a gigsehof integers, is there a nonempty
subset which sums up to zero? This is a decisiobl@m. For example, does the set {-

1,6, 3, -9, 1, -5, 4} contain a nonempty set thahs up to zero? Of course, the answer
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Chapter 2 13 Literature review

is yes; the subset {6, 3, -9} sums up to zero. fyarg that the subset {6, 3, -9} sums
up to zero is relatively “easy”; nevertheless, fimdsuch a subset from the original set

is not that easy.

The information needed to verify a “yes” answecadled acertificate one can
think of a certificate as a given solution; in these the certificate was the subset {6, 3,
-9}. Now, a decision problem that is given a cestife, for which a positive “yes”

answer can be verified within a polynomial timepiaced in the class?; on the other

hand, a decision problem that can be solved withipolynomial time, but has no

certificate, is placed in the class Formal definitions of the classesand~® can be

found in Cook (1971) and iGBarey and Johnson (1979). The question about whathe
solution, to a decision problem, can be computeglaady as it can be verified remains
unanswered, in fact it is a well known questionthiroretical computer science; if a
“yes” answer to a decision problem can be verifiedsily" (i.e. in polynomial time),

can the answers themselves also be computed ingroigl time? Put differently, does

P =n~p? Clearly, 0 ~P, but nothing can be said about whether orrotye.

On this matter, the concept of reduction is impart8asically, reduction is the
means by which any instance of one problem carrdesformed into an equivalent
instance of another problem. If problem A can be/esb using a polynomial time
algorithm and problem B can be reduced to problenusing a polynomial time
reduction (i.e. using a polynomial time algorithar the reduction), then one can find a
polynomial time algorithm to solve problem B. Thm®blem A is always harder to

solve. We say that a problemns>-hard, if every other problem inP can be reduced

to it in polynomial time; however, this does notanghat~m-hard problems belong to
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the NP class. In fact, amiP-hard problem that is ime is called~ne-complete; thus,
NP-complete are the hardest set of problems#mand if problems imyp-complete can
be solved using a polynomial time algorithm, trahother problems inv® can be

solved in polynomial time (Dorigo and Stutzle, 2D0O4ikewise, if there is a

polynomial time solution forve-hard problems, thene-complete, and hence allp,

problems can be solved in polynomial time. Seerégl. An interesting note is that

even if» = NP, NP-hard problems would still remain outside that c@arijy class,

indicating how hard it is to solve such problems.

NP-complete

P=NP=
NP-complete

P#NP P=NP

Figure 1. Complexity classes, by Esfahbag{v.wikipedia.org October 2008)

2.4 Online versus Offline problems
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In most real life applications not all input data,input sequence, required to
solve the optimization problem is available / knownadvance to the algorithm;
information is revealed as time passes, this isvknas aronline optimization problem,
as opposed to aoffline optimization problem where all input data, andusewe, is
known a priori. Almost all online problems have @fifline counterpart. The solution
approach to online problems would be to find ariahisolution given the partial
information available, executing this initial sobr, and then modifying it as more
information unfolds over time, using what is knoasaronline algorithm This means
that the online solution can not be better solutian the offline solution, assuming the
offline solution is optimal. A common example isthourier mail delivery where a
vehicle has to make a set of predetermined delistys in addition to making pickup

stops that are received throughout the day.

The efficiency of online algorithms can be evaldatsing what is known as
competitive analysjswhich was first introduced by Sleatat al in 1985. A basic
concept in competitive analysis is that of tenpetitive ratipa performance measure
for online algorithms, where an online algorithmcempared to an offline algorithm
that produces an optimal solution. lJgtbe a maximization problem with an objective
f, let O be an offline algorithm returning an optimal sauatO(l) for f, on a fully
revealed input sequende and letDA be a deterministic online algorithm. The
performance oDA is measured by the ratio between the optimalrafivaluef(O(l))
and the valu&DA(])) over each possible input sequeh¢elentenryck, 2006). That is:

ax_©OM) .. (2
I f(DA())

Definition 2.3 c-competitiveness for deterministigorithms (Kallrath, 2005)
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A deterministic online algorithnDA is said to bec-competitiveif, for all input
sequencek the ratio between the optimal offline vali®(1)) and the valu&DAC(l)) is

bounded by. That is:

%5c+a .. (3)

Wherea is a constant added to make up for any initialdition differences between

the online and offline algorithm.

As mentioned earlier, any deterministic online alipon can be set to perform
as worst as possible by passing the hardest probistance(s) to it, this is what is
known as aradversary Competitive analysis implicitly assumes a womsse problem
instance is passed to the online deterministic rdlgn, and is therefore not
representative of the practical performance ofathiene algorithm. More details on the
drawbacks of competitive analysis can be found out&oupias and Papadimitriou
2000. To overcome this issue, randomized algorithms camuged instead; however,
this requires a new definition of the competitie¢io which in turn depends on the type

of adversary used.

Borodin and El-Yaniv (1998), show that there are¢htypes of adversaries: the
oblivious adversarywhich chooses an input sequence in advance ladgdn the
description of the online algorithm, it cannot adjits input sequence based on the
behavior of the online algorithm afterwards; t#aaptive offline adversarywhich can
build / change the input sequence online and caa haure requests on the actions of
the online algorithm on previous requests; andllinshe adaptive online adversary

which can build the input sequence online like #uaptive offline adversary, but it

www.manaraa.com

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Chapter 2 17 Literature review

must also generate its own solution online. Cleaalgaptive adversaries are more

powerful than the oblivious adversary.

Definition 2.4. c-competitiveness for randomizegaaithms (Paepe, 2002)
A randomized online algorithrRA is said to bec-competitiveagainst an oblivious
adversary if, for all input sequencésthe ratio between the optimal offline value

f(O(l)) and the valu&RA(l)) is bounded byg. That is:

o) . . (&)
f(RA(1))

Only an oblivious adversary will be used throughtbig work.

2.5 Classification of the dynamic routing problem and elated difficulties

As pointed out in the introduction, this work foesson the dynamic pickup and
delivery problem with time windows. In what folloyslassification of the problem,
how it differs from its static counterpart, and tieéated difficulties / issues brought on
by being dynamic are presented. Psaraftis (1988)sthat'if the output of a certain
formulation is a set of preplanned routes that ac re-optimized and are computed
from inputs that do not evolve in real-time, thba problem is considered stati¢pp:
3); on the contrary, Psaraftis (1988) states tlifatihe output is not a set of routes, but
rather a policy that prescribes how the routes dtoevolve as a function of those
inputs that evolve in real-time, then the problesnconsidered dynamic(pp: 4).
Clearly, time is an essential element in the clesdion of the problem; based on that,
the static routing problem is characterized by:

* All relevant information (e.g. customer locatiosgrvice times, travel times,
demand... etc.), to solve the problem, is knowrthi® algorithm before the

execution of the solution begins.
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« All information related to the solution does notange after the problem is
solved (routes created).
And the dynamic routing problem is characterized by
* Not all relevant information, to solve the probleis known to the algorithm
when the execution of the solution begins.

* Some information can change after the initial sotuts created.

So, at any time, in the dynamic vehicle routing problem, there: ammpleted
visits corresponding to the part of the route that isaalyeexecuted, this part cannot be
modified afterwards, current visits correspondingtie location of vehicles, planned
visits corresponding to the part of the route thatot yet executed, and new visits that
dynamically appear over time and have to be satidfiy one vehicle if possible. See

figure 2.

T ¥ New dvnamic vis

Figure 2. Dynamic vehicle routing
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Psaraftis (1988) and Psaraftis (1995) lists twédgees / difficulties brought on
by the dynamic routing problem as opposed to th&cstouting problem, below is a
brief discussion on the most important:

1. Time is critical: when a new request appears, thetamer expects an
immediate answer whether his / her request caratisfied on the same day or
not. So, the time available to find a feasible itisa point for new requests is
seconds, not minutes; in addition, once new regquesé inserted, a re-
optimization is run, this re-optimized solution tise one dispatched, so re-
optimization can not last a long time as this Widve some vehicles idle.

2. The time a new visit appearg:(a new request arriving a few minutes before its
deadline, or before the end of the working daynisch more difficult to satisfy
than a request arriving several hours in advance.

3. Time constraints may be soft: in many practicalagibpns a customer requesting
an immediate service will most likely tolerate lé&ttviolations in the time
windows, this of course comes at an added extriatedke objective function.

4. Near-term requests may be more important: in a mymaetting it would be
unwise to immediately commit vehicles to long-teraguirements, as new
requests may appear at any time. MitéeMini¢, et al (2004), propose a
method to balance between committing to short-tand long term requests,
the method is calledouble horizon

5. Future information may be uncertain or unknownaidynamic setting future
requests are not known with certainty, at best #reyprobabilistic.

6. Flexibility to vary vehicle fleet size is lower: ia static setting, the time
between finding a solution and executing it allaivs adjustment of the fleet;

however, in a dynamic setting backup vehicles nmaybe available.
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7. Commit policy: at some point in the execution afodution, the vehicle must be
committed to its next destination(s). Prior to ttise, the solution can change,
but once a particular part of the solution has bemnmitted to, that part can
not change. When to make such a commitment is dafuental question in
dynamic routing, one policy is a ‘“latest commitnientolicy, where
commitment is left until the last possible mometite next visit is only
communicated to the vehicle at the latest possitnle that will allow it to reach
that visit (and all subsequent visits in the curremmporary solution) by its
deadline.

8. Critical node: a critical node is defined as a costr who is currently using a
vehicle, or to whom a vehicle is heading. Critioaldes need to be identified
instantly when a real-time demand arrives so tatroute can be reconstructed.
Critical nodes can be easily identified graphicaity example in figure 2 above
(page 18) nodes D, I, and M are critical nodes.hdatatically put, if vehiclé
is traveling from nodé to nodgj through nodén (i > h - j), and the departure
times from the nodes are, d,, andd;, then a critical node, at timg is

identified as h ifd; <r<d,, orjif d, <r<d,

9. Inserting new visits and re-optimization: when n@sits appear they have to be
inserted into the current solution and the solut®then re-optimized, this can
cause problems as the improvements may conflidt wié new visits, to deal
with this one can:

» Abort the search whenever new visits are addetidatirrent solution,
and then restart it from scratch. This method megyrade the efficiency
of the re-optimization as it is not allowed to fian a sufficient amount

of time in most cases.
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* New visits may be stored until the search finishes then inserted
altogether; however, the feasibility of the newitgisnay not be known
at the time of accepting them.

* New visits could be accepted and included in aatérg solution, once
the re-optimization ends, only improvements thatndo conflict with

the new visits are incorporated.

2.5.1 Measuring the difficulty of a dynamic routing problem; the degree of
dynamism:

With the above mentioned issues, a common meas$uliffioulty is required to
compare problem instances, the degree of dynanssgenerally accepted as such a
measure. Lundet al (1996)were the first to introduce this concept; basicathe
degree of dynamisndéd) for a given instance is the number of dynamimmiediate
requests appearing throughout the agy, divided by the total number of request

served on that day: (i.e. the static requests plus the dynamic regiest

dod = Jimm ... (5)

Niot

However, this measure does not take into accowtithe dynamic requests
become available; meaning, a problem instance @ithmmediate requests, out of a
total of 100, appearing near the beginning of tleekimng day would have the same
degree of dynamism as an instance with 25 immedéaieests, out of 100, appearing
near the end of the working day. See figureCRarly, requests in case 2 are much
more difficult to satisfy, and they do not allow ohutime for the re-optimization

algorithm to run; hence, even if such requestsccdd satisfied, solution quality is
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likely to be poor, because there is not much timsearch for a solution, as opposed to

case 1.
tl tz t3 t4 t5
—O0—CO0—C0O0——0C » Case 1
Time (T)
tl tz t3 t4 t5
Case 2
Time (T)

Figure 3. Arrival times of dynamic requests

To overcome this issue, the effective degree ofidyam €dod is defined as
the average of how late the requests are receijedo(mpared to the latest possible

time (i.e.T) the requests could be received (Larsen, 2001).

Nimm t
I

T

edod=-12— ... (6)
Niot

This measure ranges between 0 (a completely stgdtem) to 1 (a completely dynamic

system, where all requests are received at Tipthat is:

lim, _1r edod=1

.. (7)
Time windows can also be incorporated into this snea as follows; leg be

the earliest time a service can begin lildéte the latest time the service can begin, and

let r; be the response time; difference between thetltites a service can begin and

the time the request appears (rie= I; - t). In figure 4 it is clear that in case 2 the

requests are much harder to satisfy than in case 1.
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—>» Case 1
£ | Time

_O=
Os

t1 t; I1 I?

——»Case 2
Time

Figure 4. Effective degree of dynamism with timexdows

Larsen (2001) extended tkdodto included time windows like so:

Mimm —(]. —t.
edoqw :%Z(w

tot j=1

) .. (8)

2.6  Solution approaches
In general, there are two major solution approadbesptimization problems:

exact methods, and approximate methods; exact e thoarantee reaching an optimal
solution to any problem instance, assuming theireduesources are available (i.e. the
solution algorithm is allowed to run for a suffioteamount of time, and there is enough
computer memory to withhold all necessary data evtiie algorithm is running). Such
methods include: branch and bound, branch andbratjch and price, Lagrangian
relaxation, and column generation. Neverthelessalme of combinatorial explosion
(mentioned earlier), and the resources requiredaoh, if possible, an optimal solution

for np-hard andne-complete problems, one can not afford the timemamory,

needed to reach such a solution; and so, someokattrade off between solution
guality (i.e. reaching an optimal solution) andowgges required (mostly time), to find
such a solution, is needed. In doing so, heuretid metaheuristic approaches were

created as approximate methods.
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Approximate methods can be classified as consteicthethods and local
search methods (Larsen, 2001 and Dorigo and Sp@@®4). Step by step and without
backtrackingconstructive methodsuild a complete solution by incrementally adding
solution components to an empty solution. The aoicwhich solution component to
add at each step is usually based on heuristienr#ton; still, solution components
can be added at random in some cases. As an exatopider the problem of finding
the shortest route that starts and ends at the kmagon passing through a number of
other locations. See figure 5. One constructivehoetwould be to start from a point
and then move to a point closest to the currentitphis is known as the nearest-
neighbor heuristic); starting from point A, the wan willbe: A> B> C—> D> E

SF>A

Figure £ Nearest neighbor heuristic (Dorigo and Stutzle, 2!

The point to stress is that although heuristic apphes produce solutions fast,
the solutions are not optimal and the approachderisistent when applied to different
instances of the same problebacal search on the other hand, starts with an initial
feasible solution and tries to improve it by makiagsmall change to the current
solution, to produce a new solution. This new sotuis tested against the problem
constraints for feasibility, and its cost is congaltlf the new solution is feasible and
has a reduced cost, it is accepted as the currentatherwise, the current solution

remains unchanged. This process is repeated (uhffeyent solution changes on
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subsequent tries) until some stopping conditiomét; the stopping condition can be
based on time, number of changes attempted, ofatiiehat no more changes to the
solution can be found and accepted under the speabnditions. This is known as a
greedy searcimethod as it accepts only improving moves, it Wwél shown later how

this could affect the quality of the solution.

Local search requires the definition of a neighbordh structure (a
neighborhoods a set of solutions that can be reached fronttheent solution in one
single step), and an examination scheme that detesmhow the neighborhood is
searched and which neighbor solutions are accefteating a neighborhood structure
is very dependent on the problem and may have fmams, a common example is the
k-exchangeneighborhood structure; basically, ttkeexchange neighborhood of a
candidate solutios is the set of candidates solutisgighat can be obtained froaby
exchangingk solution components; for example, in figure 5 abav 2-exchange
neighborhood consists of the set of all the candidalutionss’ that can be obtained by

exchanging two pairs of arcs in all possible w&ee figure 6.

g'e

Figure 6. 2-exchange neighborhood (Dorigo and &tu2004)

The examination scheme either uses the best acaleptwhich chooses the
neighbor solution giving the largest improvementia objective function value, or the

first accept rule, which accepts the first impravimove found. Regardless of which
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examination scheme is used, local search can asojupe optimal solutions within its
defined neighborhood, meaning local search willbedt, terminate at lacal optimal

solution.

To escape local optima, metaheuristics were creAtegetaheuristics (“meta” a
Latin word meaning “beyond”) is a master strategya general framework, that guides
and modifies other heuristics to produce solutioagond those normally identified by
local search heuristics (Glover, 1986; and Glovwed daguna, 1993). Compared to
exact methods, such as branch-and-bound, metatiesiigannot generally ensure the
exploration of the entire search space; still, theyvide guidance to areas of the search
space containing high quality solutions. Well-desidgj metaheuristics avoid getting
trapped in local optima or cycling (sequencing faene visited solutions over and
over), and have a mathematical proof of reachingra solutions if allowed to run for

a sufficient amount of time.

One way to escape local optima is to allow degmdimoves to be taken,
consider the following example:

mincost =c¢(x+y)+(c+1)z

where

X,y 0[01]

L= {O, x and y are similar
1, x and y are different

Variablesx andy are the decision variables (binary variables} a constant, anzis
also a binary variable which equals 0 if batandy are similar (i.e. either both are 0 or
both are 1); otherwise,will have a value of 1. Now assume that the cursetution is
at pointx = 1,y = 1 and assume that only one variable can be euaaga time (i.e. a

move from one solution to another in the neighbothentails changing only one
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variable), clearly no one single move can be takem the current solution, to reduce
the objective function value (in fact, all movedlwicrease the objective function by
1); nonetheless, a lower cost does existXie0,y = 0) but can not be reached without
increasing the objective function value first. Saade 1.

Table 1. Local optima example

X y Cost
1 1 2C

1 0 2c+1
0 1 2c+1
0 0 0

Clearly, this is a local optima problem which cam twercome by allowing
degrading moves to be taken, in hopes that subsequeves will produce better
solutions. Care should be taken, however, aboutvihg in which the objective
function is allowed to degrade; to simply accept arove without guidance leads to a
random walk through the search space, and is uwyltkebring about a good solution.
Instead, metaheuristics use controlled methodscé@ting degrading moves, in order

to both escape local optima and then go on tobgtter solutions.

2.7  Previous work

The variety of applications that use routing modelsolve routing problems is
extensive; on one hand, the problem is to planueréor one vehicle to deliver a
predetermined amount of goods to a specified setoo#étions, with all needed
information being known for certain and known irvadce; and on the other hand, the
problem is to plan a set of routes for a fleet efehogeneous vehicles doing both
delivery and pickups of goods at locations thatrareall known in advance, but rather
revealed over time, and with all the needed infdiomabeing uncertain or probabilistic

at best, add to that the time limitations set origuming each pickup / delivery visit.

www.manaraa.com

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Chapter 2 28 Literature review

Needless to say that such a wide range has receivgatat deal of attention and
research, and the amount of literature now avalablenormous. In the efforts to
provide a comprehensive, well structured reviewtted pervious related work, this
section will be divided into three parts:

» Part I: review of the static vehicle routing prablevith exact solution methods.

» PartIl: review of the static vehicle routing pretsi with approximate methods.

» Part lll: review of the dynamic vehicle routing ptem and its related difficulties.

2.7.1 The static vehicle routing problem — exact methods
As mentioned earlier, the static vehicle routinglpem is concerned with
finding an optimal route for a fleet of vehiclesfoeming a predetermined set of visits.

The vehicle routing problem is classifiedras-hard, and therefore can only be solved,

to optimality, for small problem instances whichvealimited application. Exact
methods include: Dynamic Programming, Lagrangiamaxation, and column

generation; the most recognized work in each grlads summarized next.

Kolen, et al (1987) were the first to solve the vehicle rogtproblem with time
windows to optimality using Branch-and-Bound andhByic Programming methods;
each node, in the Branch-and-Bound tree, corresptithree sets: s€twhich is the
set of feasible routes starting and ending atdqeot, seP which is a partially built
route starting at the depot, and €awhich is a set of customers forbidden to be next o
P; branching is done by selecting a customer thatoisforbidden and that does not
appear on any route, then two branches are gedeiate in which the partially built
route P is extended by the selected customer, and oneewtherselected customer is

forbidden to be the next customer on the routeeath Branch-and-Bound node
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Dynamic Programming is used to calculate a lowamidoon all feasible solutions. A
similar approach is used in Caramit, al (2002) for a multi-cab metropolitan
transportation system; basically, a new requeéitss inserted in one of the planned
routes and this route is then optimized using adbdyis Programming algorithm; here

too the approach is applicable only to small probiestances.

Fisher, et al. (1982) use Lagrangian relaxation combined witimaltiplier
adjustment method to solve a mixed integer programgnmodel of a commercial
delivery system. Kohlet al (1997) relax the constraints guaranteeing tharyev
customer is served exactly once and added a petwmltlye objective function; the
master problem now consists of finding the optirhagrangian multipliers and is
solved by a sub-gradient optimization method; thie-groblem becomes the shortest
path problem with time windows and capacity constsa and is solved using a
Dynamic Programming approach. Kallehaugeal (2006) use a column generation
approach to solve the vehicle routing problem withe windows; a master problem
and a sub-problem are created, and a branch-antidfoamework is employed along
with acceleration strategies that increase theieficy of branch-and-bound method.
The approach, when tested against Solomon’s ben&hrpeoduced the following
regarding travel distance: 361.6 for R207.25, 37%0r7R209.25, 350.9 for R211.25,

and 1143.2 for R201.100.

Westphal and Krumke (2008tudy a large scale real-world vehicle dispatching
problem with soft time windows (i.e. time windowarcbe violated, but with an added
extra cost to the objective function); they develdpa pruning scheme based on

matchings in order to speed up the branch-and-bamdneration in the column
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generation process; computational results on realdwdata show that, overall, the
computational time is less (only took 38% of thegimal time), and only 24% of the
nodes were explored compared to the old pruningereeh Laporteet al. (2002)
propose a stochastic integer programming framevorkolve the stochastic vehicle
routing problem (stochastic in the sense of randemand at each customer location),
optimal solutions were reached for instances witimast 25 locations and using only 4
vehicles. Letchforet al. (2006) propose an algorithm based on Branch-andt€u
solve the open vehicle routing problem with capacionstraints (an open routing
problem is one in which vehicles are not suppose@turn to a specific location at the
end of their routes); the algorithm was tested ewermal standard instances, small
instances, and was able to produce optimal solutitguristic methods were then
applied to the same instances and their “near-@ftisolutions were compared to the
optimal ones. This, in turn, enabled the assessofehie solution quality produced by

heuristic methods.

2.7.2 The static vehicle routing problem — approximate m&ods

With larger problem instances, exact solution méshare impractical and may
sometimes never reach an optimal solution; thus,campromises solution quality for
solution speed. In doing so, heuristic and metasturmethods are used; in what
follows, approximate methods will be categorizedo irtonstructive methods and

improvement methods; later, some metaheuristicseaiewed.

The first paper on constructive (route-building)uhstics, for the vehicle
routing problem with time windows, was that by Edwaet al. (1986) in which they

present an extension of the traditional Savinggist, the algorithm begins with all
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possible single customer routes (dep®t customeri > depot) and iteratively
calculates which two routes can be combined regulth the maximum saving (the
saving between customdrandj is calculated asaving = dip + do; - Gd;, where G is
referred to as the route form factor). Landeghe@88) describes a heuristic based on
the Savings method with the additional criterioattmodels an intuitive view of time
influence on route building in the vehicle routimgoblem with time windows;
experiments show that this added criterion yielg@miBcantly better results to the
problem compared to pure routing heuristics, antd aampete (in terms of speed) to
other heuristics specially built for this kind afoplem; however, the savings heuristic
generally produces solutions of lower quality as ldist un-routed customers tends to

be scattered over the geographic area.

To overcome this problem, Potvin and Rousseau (189ply an insertion
algorithm for the vehicle routing problem with tinvendows; the algorithm builds
routes in parallel and uses a generalized regrasuame over all un-routed customers in
order to select the next candidate for insertiammerical results on the standard set of
Solomon’s benchmark problems compare well with otsequential algorithms
presented by Solomon 1987, but are still far frgotiroal. In addition, Brownet al
(1987) consider the problem of dispatching petnwletank trucks under various
constraints and applied an assignment and rougngdtic on known requests within a
rolling horizon; the heuristic first assigns thadis to available vehicles and then solves
a traveling salesman problem to optimize each rdaeischet al (1995) addressed a
similar problem but the heuristic used first geteseclusters of customers for each
vehicle type, then the total distance traveled pinoized within each cluster using

either a heuristic or an exact algorithm, dependimghe problem size.
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The concept of neighborhoods is central to almdbtr@ute improving
heuristics, examining some, or all, of the solwidn a neighborhood might reveal
solutions that are better than the current onayhich case a move is made to that
better solution, and the process is repeated; e gmwint no better solution(s) can be
found and an optimal point is reached, in mostsdsis will be a local optimum, but it
might be a global one. Maybe the most used imprevereuristic in routing problems
is the k-opt heuristic; in its basic form (i.e. the 2-opt), oseeks a route that crosses
over itself and reorders it so that it does not Q&ES, 1958). Potvin and Rosseau
(1995) present two variants of the k-opt heurigtie2-Opt* and theOr-Opt, in Or-Opt
a segment of the route is moved to another plach@isame route; whereas in the 2-
Opt* a segment of a route is exchanged with a sagofeanother route, computational

results were only tested against randomly geneddéal sets.

Osman (1993), created thenterchange neighborhood for the vehicle routing
problem; here, a subset of customers of a sizethess\. in one route is interchanged
with a subset of size less tharnin another route; computational results reportedao
sample of seventeen benchmark test problems, aedrandomly generated problems;
the A-interchange method improved the solution in teohshe number of vehicles

used, and the total distances travelled.

2.7.3 The dynamic vehicle routing problem and related dificulties

The pickup and delivery problem is sometimes matieds adial-a-ride
problem; the name originated from the applicatioh tansporting elderly, or
handicapped, people from one location to anothety@amic single-vehicle dial-a-ride

problem was first addressed by Psaraftis (19800 ait exact algorithm; based on a
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finite time horizon, a series of static problemsswsolved through a Dynamic
Programming algorithm and optimal solutions for Brpeoblem instances were found
within reasonable time. Later, Psaraftis (1983)egalized his approach to account for
time window constraints, and in 1988 Psaraftisodticed a dynamic version of the
Vehicle Routing Problem, where it was stated th#te solution is a set of preplanned
routes that are not re-optimized and are computed the inputs which do not evolve
in real-time, then the problem is classified asistan the other hand, if the solution is
a policy that recommends how the routes shouldvevat a function of the inputs that
evolve in real-time, then the problem is classifeei dynamic. Psaraftis presented a
number of research topics the most important beihgther a vehicle should wait at
the current location, after finishing the servioe,order to “batch” newly arriving
requests, or travel immediately after the servioewever, Psaraftis did not address

these issues back then.

A few models were created in the early ninetiesctvimake use of queuing
theory; basically, a vehicle is modeled as a tiageserver moving from one customer
location to the next. Such models required greatanputational time and more
complex mathematical solutions; therefore, theyewaot as popular as other models
although they were more precise. The most comps#emvork using queuing models
is that of Bertsimas and Ryzin (1991); they propog@eneric mathematical model for
a single un-capacitated vehicle, traveling at astammt speed in the Euclidean plane.
They called this problem the dynamic traveling repan problem. The objective was
to minimize the total time in the system (i.e. wagttime plus service time). Using
approaches from queuing theory, simulation, contbiel optimization, and

probability, an optimal routing policy was found faht traffic conditions; in addition,
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it was shown that the waiting time grows much fgdtean that in traditional queues, as

the traffic intensity increases.

Shortly afterwards, Bertsimas and Ryzin (1991) edéel their previous work
by considering the case of multiple identical védgam, with unlimited capacity as
well, and the case in which each vehicle can satvaost a predetermined number of
customers. They showed that, in heavy traffic ciomas, the system time is reduced by
a factor ofl/n? over the single-server case, they even extendsid work further by
using a more general probability distribution tesc#e the arrival of new requests (a
renewal process instead of the Poisson distribytiand the request locations were
assumed to be arbitrary, instead of being uniforutistributed. With theseniore
realistic’ assumptions, Bertsimas and Ryzin showed thatr@tpolicies used in the
static vehicle routing problem can produce neamumgdt and in some cases optimal,

solutions for the dynamic version of the problem.

Swihart and Papastavrou (1999) extended the dynaraieling repairman
model to include the same day pickup and delivergstraints (i.e. a vehicle must
pickup goods from one location and deliver therartother location on the same day),
both pickup and delivery locations are independarat uniformly distributed over the
service region; a number of routing policies wegteéd against simulated data, and the
nearest neighbor policy performed best in heavfitcraonditions for both the single
and multiple vehicle cases. Kilbgt al. (1998) divided the working day horizon into
fixed time slots during which arriving requests ardy considered at the end of each
time slot, and the optimization algorithm was tlaliswed to run on the current static

problem for the duration of a time slot.
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A dynamic vehicle routing problem, with time windewwas considered in
Gendreau,et al (1998); here, a hybrid approach was used to solverational
problems facing long-distance courier mail compsyiiest, a simple insertion heuristic
is used to insert dynamic requests, and then a $abuch with an adaptive memory is
applied to the initial solution to improve it untile occurrence of the next event. The
same approach was extended in Gendreiaal, (1999) to accommodate for pickup and
delivery of parcels in a local express mail compéhg addition here is that the same
vehicle should be used to do the pickup and dsfj\aard the pickup should proceed the
delivery). A similar approach for a dynamic diatide problem was used in Attanasio,
et al (2004); here, the authors used a parallel impieateon of a Tabu Search
heuristic previously reported in Cordeau and Lap{2003) for the static version of the
problem; whenever a new service request occurg)samtion heuristic is first applied,
to know if the request can be accepted or not, Treyu Search is applied to optimize

the routes.

A dynamic vehicle routing problem, with no time wows, was considered in
Gambardellagt al. (2003) and in Montemanngt al. (2005); here, the entire problem
was solved as a series of static vehicle routirablpms using Ant Colony System
metaheuristic; useful information about the sohsigroduced is transferred from one

static problem to the next through a pheromoneawasion mechanism.

An interesting approach that is seldom addresseditenature is that of
diversion; Regan, et al. (1995) were the firstxplere this idea; basically, it consists of
diverting a vehicle away from its current plannestthation to serve a request that has

just occurred in its district. The work of Ichow,al (2000) propose a broader view of
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diversion in the context of a long-distance coumetil service where parcels are picked
up from one area, brought back to a central deypat,then delivered to another area on
the next business day. Addressing diversion in ¢lostext is more challenging, as
consolidating and sequencing the requests becomés@ortant issue. A matter of
concern in the diversion approach is the time alied for the optimization algorithm;
since vehicles are moving fast and dynamic requeaisappear at any time, diversion
opportunities are easily lost; basically, if thméi allowed for the algorithm is too latge
diversion opportunities can be lost. On the cogfrdrthe time is too small, solution

quality might suffer.

Yet another issue, that is central to dynamic rauproblems in general, is that
of anticipating future requests and how it affecisting decisions (e.g. relocating idle
vehicles, accepting early requests, setting a ffutroe for accepting requests... etc.).
An approach introduced by MitraMini¢, et al (2004), for a pick-up and delivery
problem with time windows, is that of the doubleihon. Here, both a short-term and a
long-term planning horizons are considered, wiffedgnt objective functions for each
horizon; the objective of the short term horizomresponds to the true objective (e.g.
minimizing the total traveled distance), whereas dbjective associated with the long-
term horizon tries to allocate larger slack timesthe constructed routes, to better
accommodate future requests; the optimization isedimr both objective functions

using a simplified version of Tabu Search.

In routing problems with time windows, schedulirge tvehicle’s visits is a
critical issue. Scheduling, in this context, meé#ms determination of the arrival and

departure times at each location; this, in turgunes setting some waiting strategies at
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each location. In static routing problems with timmdows, the only waiting strategy
is the drive first strategy; a vehicle should ménn its current destination as soon as
the service ends, thus causing it to wait at tha destination if it arrives before the
time window begins. In a dynamic setting, howevke, drive first strategy would not
apply simply because new requests may appear atiragyit would be better for the
vehicle to wait at the current destination, forl@sg as possible, in order to reach its
next destination at its time window’s lower bouttdys allowing more new requests to
arrive and be better inserted into the currente®uthis is known as the wait first
strategy, it is expected to produce shorter rothiaa the drive first strategy, but will

require more vehicles to do so.

Between the two extreme strategies (wait first dride first) Mitrovic-Mini¢
and Laporte (2004) showed that a combination off Isttategies gives the best results
with regard to the number of vehicles and totaldtad distance; their approach is
based on the dynamic partitioning of planned routes segments made of close
locations; within a segment, a vehicle always dispas soon as possible from its
current location; but when it is time to cross amaary between two segments, the
vehicle waits at its current location for a fraatiof the time available up to the latest
possible departure time. In Ichowd,al (2001), a vehicle that has completed its service
at one location should wait for some amount of tifiés next destination is far, and
the probability of a new request arriving withia gurrounding area, in the near future,

is high enough; thus, probability distributions ased in the waiting strategies.

This work is focused on the dynamic pickup andwésii problem with hard

time windows and all relevant input data is assurmetle deterministic. As for the
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degree of dynamism, some requests are assumed kodven a priori, and initial
routing plans will be built upon them; still, theage requests that emerge afterwards
which should be accommodated for if possible. Tiea af application for this model is
the courier mail pickup and delivery problem, inigfhsmall parcels are picked up
from one location and delivered to another locationthe same working day; as the
parcels are small (mainly documents), the capacihstraint is not considered, and the
fleet of vehicles is assumed to be homogeneousddiition, as the problem is dynamic
the vehicle may visit the same location more tharegthe customer may request more
than one service per day), and hence the vehicletisonstrained to visit the location
only once. The objective it to minimize the totastdnce traveled by all vehicles.
Below is the mathematical model along with the tiotaused.

Table 2. List of symbols used in the mathematicadleh representation

Symbol Representation
G=(N,E) Complete weighted digraph witthnodes andt edges
N ={1"2"3",..n"} Set of pickup nodes
N ={1"273,.n7} Set of delivery nodes
N=N"UN" Set of all nodes with node 0 representing a cedegpbt,n is
N = {0123....2n} even
E={(i,j)i,jON} Set of edges
V={k} k=1...m Set of vehicles
T Time at which a new request is available (reatizatime)
Ng(7) Set of critical nodes
Nu(7) Set of un-serviced nodes
Nu/e() Set of un-serviced or critical nodes
ri A request for pickup at node and delivery at nodié
[e, li] Time window for request
o] Demand at node
tijk Travel time from nodeto nodg using vehiclek
Cijk travel cost\distance from nod& nodg using vehiclek
S Service time at node
a Arrival time at node
di Departure time from node
Wi waiting time before beginning the service at nofEccurs
! when the vehicle arrives before the time windowiieg
W2 waiting time before the vehicle leaves naoddter finishing
! the service
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Objective function
M n n

min chiikxilk
k=1 i=1 j=1

Such that:

Flow conversation constraints

V| n )
DD X =10 0N, (1)

k=1 j=1

VM n )
D Xy =10/ 0N, (7)
k=1 i=1

n n
D Xk =D Xn DhON, (1), kOV
i=1 j=1

>

D Xox <10KOV,
i

Time window constraints
a <I; ON,(7)
ag <lo OkOV

di 2 g +Wl +5 0N, (7)

39

a; =d; +ty if Xy =10I0Ng,0(7), JUN,(7), kKDOV

wl; =max{0, & —a;} i O N¢,(7)

V\/Zi :di —(ai +V\ﬂ-i +Si)DiDNc/u(r)

Xik =

_ |0, if vehiclek doesnot drivefrom vertexi to vertex]
1,if vehiclek drivesfrom vertexi to vertex|

Literature review

.. (9)

.. (10)

. (11)

. (12)

. (13)
. (14)
.. (15)
.. (16)
. (17)

.. (18)

.. (19)

Equation (9) requires that only one vehicle leasesritical, or un-serviced,

nodei once. Equation (10) requires that only one velatctéres at un-serviced nogle

once. Equation (11) requires that for each un-sedsnodéh, the entering vehicle must
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eventually leave that node. Equation (12) requinas each vehicle can leave the depot,
at most, once. Equation (13) requires that thevartime, at each node, should be
before the end of its time window. Equation (14)uiees that all vehicles must return
to the depot before it closes. Equation (15) rexguthat departure tindg must be later
than or equal to the completion time of the serice a + wl; + s)). Equation (16)
requires that the arrival time at a destinationenotist equal the departure time from
the origin node plus the travel time between the twdes. Equations (17) and (18)
define the waiting times before the service (if tehicle arrives before the time
window begins) and after the service (if the vehiel to wait after the service for new
requests to appear). Finally, equation (19) stétasx;x is a binary variable indicating
whether areifj) is used in the solution or not. Of course, thecBdence and coupling
constraints (i.e. the pickup must be performed teetbe delivery, and both must be

done by the same vehicle) apply throughout the node
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M ethodol ogy

3.1  Solution approach

As mentioned earlier, the area of applicationhis tourier mail pickup and
delivery problem, in which small parcels are pickgdfrom one location and delivered
to another location on the same working day. THatiem approach is as follows: an
initial routing plan, for each vehicle, is consted based on the static data available
(i.e. based on the requests known a priori to eti@tu This routing plan will not be
optimal as it is generated using the Nearest Aaiditheuristic, the reason for not
generating an optimal initial routing plan, is besa the problem is dynamic. The
routing plan is then improved using a hybrid altor based on Tabu Search, Guided

Local Search, and Variable Neighborhood search.

The initial improved solution is executed, and aswnrequests unfold
throughout the day, they are inserted into soméciash routing plan according to the
Cheapest Insertion heuristiif, possible Sometime, the time windows on dynamic
requests are too tight to satisfy; therefore, secjuests may be rejected. The cheapest
insertion heuristic is followed by a quick localseh based on the Reduced Variable
Neighborhood Search (RVNS), feachnewly arriving request; the idea is to evenly
distribute these newly added visits among vehicWbat happens is that when the
cheapest insertion heuristic is used, new visitisiag towards the end of the working
day are most likely added to un-used vehiclest esquires much less time to simply
use such idle vehicles, than to find a feasibleri@n point within the current routes of
the used vehicles, and therefore more vehicles éllused, but will also be under

utilized.
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After this quick local search is done, the dispatcban inform the customer
whether his / her request can be accommodatednfdhe same day or not; however,
requests are not dispatched to the vehicles orraheé till after the re-optimization
hybrid is run. The re-optimization hybrid algorithim run after 10 new visits are
inserted, and according to its output, new requeegtslispatched to the vehicles. Figure
1 illustrates the procedure.

T . Allowed to run till 08:0(

; static 14 Offline algorithm
. Requests ; — Using the hybrid
Initial metaheuristic Improved
R - routing plan routing plan .
Start of working
day (08:00)
P Has to be within secon
" Central
dispatche
. . New request v

© Inform cI|er_1t that h|§ \_her Can be arrives Execute improved

= request will be satisfied Inserted routing plan

1S
g 8 lyh i
g % Only has 15 minutt No A
- g Onlinealgorithm

g v

= - —]. Dispatch the 10 new

Rerun the hybrid metaheurls(le requests to vehicles
A End of working
[ Reschedule for tomorrc | day (17:00)

Figurel. Solution approac

It should be noted, however, that the re-optimiatlgorithm is only based on
ideas from these three metaheuristics; they areapplied in their usual context. The
hybrid is then tested against problem sets, orlyinereated to investigate the
effectiveness of population based metaheuristios|atal search metaheuristics; as the
ones used here. A brief on the heuristic and met&ie approaches used is explained,

and then the hybrid approach is presented.
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3.1.1 Nearest addition heuristic

The nearest addition heuristic builds routes byiraglglisits closer to the end of

the route. The algorithm goes as follows, for alicles:

1.

2.

Denote the vehicle to be considerednoy

Start with a partial route consisting of the depatfrom the depot.

Find a visitv closest (cheapest to get to) to the end of theenuipartial
route ofw. If it is not possible to find such a visit, cloges current partial
routew, choose another empty vehicle and go to step 2.

Add v to the end of the partial route.

Go to step 3.

If all vehicles have been used and there are \g§its unperformed, new

vehicles must be brought in; otherwise, the albarifails.

3.1.2 Cheapest insertion heuristic

Let c(i, k, j) be the cost of inserting nodebetween nodes andj that are

already part of the route. The cheapest inserteumistic selects the next node to be the

one minimizingc(i, k, j) and is not a part of the current route. The praceds repeated

until all nodes have been inserted. This is reddyiva fast heuristic and is practical in a

dynamic setting; when a request arrives the cust@wpects an immediate answer

whether his/her request can be satisfied on thes shay or not; so, the time available

for the algorithm to find a feasible insertion pofor new requests is seconds, not

minutes.
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3.2  Overview of the metaheuristics used

As mentioned before in section 2.6, metaheuristiese created to escape local
optima by filtering out proposed moves accordingthe metaheuristic rule (e.g. a
greedy search metaheuristic filters out all movésciv do not improve the solution).
To do so, metaheuristics were classified into twayancategories: those that start with
and maintain only one single solution at each tiena and those that start with
multiple solutions (2 solutions or more), the latie known as population based
metaheuristics. It is difficult to say which appecbas better, faster, or even has a higher
chance of reaching an optimal solution; it actualgpends on the problem being
solved. All metaheuristics used in this work are lotal search nature; these

metaheuristics are described next.

3.21 Tabu Search

In Tabu Search (TS), degrading moves are acceftedg the search to avoid
moving to places previously visited; this can beneldy, of course, storing every
solution visited and forbidding the return to anycls point. However, this has a
significant memory burden; therefore, TS uses artegie calledTabu List(Glover
1986, 1989). The tabu list is a list of "featured"a solution that are forbidden, or
alternatively, that must be present. Features @tedchand dropped from the list when a
neighborhood move is made. In routing problems, fedwures are the arcs of the
current solution, and two lists are maintained: tire¢ dictates which arcs must not be
part of any new solution (forbid / tabu list), atie other dictates which arcs must be
part of any new solution (keep list). Maintainingite lists encourages exploring
solutions with different arcs. The length of timéature remains on a listlfe Tenurg

is important and affects how the search avoids iposvsolutions, the tenure is a
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parameter of the algorithm, and can be altered mjcwdly during the search process;

which will be done in this work as part of the sfwalgorithm.

Whenever a move is examined, TS looks at the new added to the solution
and at the old arcs that left the solution, thenrthmber of new arcs appearing on the
forbid list and the number of old arcs that appearthe keep list are added, the
summation is called the tabu number of the movthdftabu number is above a certain
value (which varies according to the move typeg thove is declared tabu and
rejected. This rejection can be overridden in oagec when the cost of this move is
better than the best cost solution visited soThis is known as the aspiration criterion,
it prevents the search from being overly inhibitedthe tabu list (Glover, 1990 and

Gendreau, 2003).

3.2.2 Guided Local Search
Guided Local Search (GLS) can be seen as an ditean@ TS in escaping

local optima. As in TS, how the search can moveirdois restricted; GLS makes a
series of greedy searches, each to a local minintwijt optimizes a different cost
function from the original. An augmented cost fumctis created by adding a penalty
term to the true cost function, the penalty ternthiss sum of all penalties for possible
“features” of a problem (in this case the featwaes the arcs of the routing problem),
the penalty for each possible arc starts at zedonalhonly be increased when the local
search reaches a local optimum (Voudouris, 200B)erGan objective functiog that

maps every candidate solutisnGLS defines the augmented functioas:

h(s) = g(s)+A D (pi1i() (1)
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Wherel is a parameter to the GLS algorithmjs the penalty for feature (gl values

are initialized to 0) ant] is an indication of whethesrexhibits featuré or not, that is:

. @)

{1 if scontainsfeaturei
i

0, otherwirse

GLS determines which arcs to penalize based upercadist of the arc in the
solution and how often that arc has previously apge at local optima. GLS tries to
choose a bad or costly arc in the solution to pe@ahs removing costly arcs should
lead to finding better solutions in subsequengtiens. GLS penalizes an arc for which
the utility is the highest of all arcs in the current solutithrg utility of an arc under a
local minimums: is:

Ci
1+n

util; (s:) =1, (s¢) x

.. (3)

i

Gi is the cost of arg n; is the number of times arcdas been penalized, thus GLS tries
to penalize arcs with high cost. However, if an has been penalized a number of
times, the importance of cost reduces, this is tduthe fact that, if an arc has been
penalized a large number of times and is stillne solution, there may be no better
arc(s) with which to replace it and it is probabBst to start looking elsewhere to place
penalties. The penalty is equal to the cost ofdteemultiplied by the penalty factor

(specified to the metaheuristic).

3.2.3 Variable Neighborhood Search

The basic idea of Variable Neighborhood Search (VNSthe systematic
change of the neighborhood structure explored. Réwe principles of VNS are as
follows (Mladenovic and Hansen, 1997, 1999, 20@D65)

* Alocal minimum with respect to one neighborhoodas necessary so for another.
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* A global minimum is a local minimum with respectatb possible neighborhoods.
* For many problems local minima are relatively claseach other. This principle is

an empirical one; local optima can provide somahtsabout the global optima.

VNS is built of two main components: Variable Neighhood Descent (VND)
and Reduced VNS (RVNS). VND is simply a greedy seain which only improving
moves are taken; this will, most likely, produceoaal optimum solution which,
according to the first principle, differs accordite the neighborhood structure used.
RVNS is concerned with how to escape a local opt{nega which point to move to
once a local optima is reached), the easiest ansaad be to move to a random point,
and, according to the third principle, it would &dvisable to move to a point close to
the local optima first, then explore further pointsrequired. The original VNS

algorithm is as follows (Mladenovic and Hansen,72,99999, 2001c, 2003):

Initialization:

» Select the set of neighborhood structidgsfor k = 1, 2... kaxthat will be used in the outer|
loop (known as thehaking phasé VNS), and select a set of neighborhood structhres
forl=1, 2... laxthat will be used in the inner loop (known aslieal searchphasein
VNS).

e  Starting from an initial solutior.

* Choose a stopping condition

Outer loop; shacking:
e Setk—1
¢ Repeat the following steps unkil= Kyax
«  Generate aandomsolution from theék" neighborhood\,(x) of the initial solutiorx, call this
solutionx’

Inner loop; local search

e Setl—1

* Repeat the following steps uniti | .«

» Explore theN,(x’) neighborhood and finthe bestolution, call this solutior”

* Move or not: IfX” is better thax’, make a move tg” ; otherwise, change the
neighborhood tb=1 + 1

* Move or not: Ifx" is better thax, move there and continue the search Wtghotherwise,
setk=k+1

Figure 2. Original VNS algorithm
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Clearly, the original VNS algorithm uses the rantiogenerated solutior’ to
diversify the search, and uses a greedy searchithlgo(best accept) to intensify the
search (in the inner loop); in this study, the dsetocal search approach is replaced
with a metaheuristic combining both TS and GLSdtibn criterion, this will allow the
inner loop to explore each of tiNg neighborhoods more thoroughly, and reach better

local optima. The proposed hybrid is as follows:

Initialization:

e Select the set of neighborhood structiMgsfor k = 1, 2... kaxthat will be used in the outer
loop (known as thehaking phasén VNS), and select a set of neighborhood structhres
forl =1, 2... laxthat will be used in the inner loop (known asltteal searchphasein
VNS).

» Starting from an initial solutior, which in this case, is a routing plan after new requests|a
inserted using the cheapest insertion heuristic.

« Choose a stopping condition, which in this case, is a spags of the hybrid done after 10
new visits are added to the solution using the cheapestiorsheuristic

Outer loop; shacking:
e Setk1
* Repeat the following steps unkil= kyax
«  Generate aandomsolution from thek" neighborhood\,(x) of the initial solutiorx, call this
solutionx’

Inner loop; local search

e Setl1

* Repeat the following steps uniti | ..

» Explore theN|(x’) neighborhood using a combination of TS and GLS andtfiadest
solution, call this solutiox”

* Move or not: Ifx” is better thax’, make a move t®”; otherwise, change the
neighborhood to=1 + 1

*« Move or not: IfX” is better thax, move there and continue the search Withotherwise,
setk =k+1

Figure 3. Proposed hybrid metaheuristic
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3.3  Experimental procedure
As stated in the introduction, the objectives af gtudy are:

1. Creating a hybrid metaheuristic to solve the dymamickup and delivery
problem with time windows; the hybrid is based abli Search, Guided Local
Search, and Variable Neighborhood Search. The dhyhiti be developed using
the ILOG CP classes under a C++ development envieon

2. Investigating the effect of changing the neighbordhorder on solution quality
and solution speed (in the Variable Neighborhooar&econtext).

3. Investigating the effect of dynamically changingusd parameters on solution
quality and solution speed (in the Tabu Search &uided Local Search

context).

The first objective is achieved through the aldont proposed in figure 3
above. The second objective is achieved througssifiang the neighborhoods used in
the VNS framework into two groups: those that mpdihly one route which are
known as intra-route neighborhoods (the ones usetiis study are: Intra Relocate,
Two Opt, and Or Opt), and those that make changesden routes which are known
as inter-route neighborhoods (the ones used inghidy are: Merge and Relocate
Tours, Cross, FP Relocate, Exchange, and Relocat&ct definitions of these
neighborhood structures are in the appendix. Tabbelow shows how the order of

these neighborhoods is changed on each trial.
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Table 1. Neighborhood order changes

Outer loop; shaking

Inner loop; local search

Intra Relocate

Merge And Relocate Tours

Two-Opt Cross
Or-Opt FP Relocate
Exchange
Relocate
Merge And Relocate Tours Intra-Relocate
Cross Two-Opt
FP-Relocate Or-Opt
Exchange
Relocate
Relocate Merge And Relocate Tours
Or-Opt Intra-Relocate
Exchange Cross
Two-Opt
FP-Relocate
Merge And Relocate Tours Relocate
Intra-Relocate Or-Opt
Cross Exchange
Two-Opt
FP-Relocate

The third objective is achieved through dynamicalynging the TS and GLS

parameters during the local search phase, the ebarg as follows:

The total number of iterations for the local segsbhse is 15@er neighborhood

» Before the optimization loop is entered set theutervalue (for TS) to 5 and the

penalty value (for GLS) to 0.45; meaning when tipéinization loop begins the

search, towards a local minimum, is intensified.

* When the search reaches iteration number 70 ahéré¢ is no improvement on the

objective function for the past 10 moves, the de@&diversified by increasing the

search parameters to 12 for the tenure and O#Bdégoenalty.

» Just before the optimization loop ends (at iterati@0), the search parameters are

set back to lower values; tenure = 5 and penaQys.
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The problem will be solved once using these paramehanges, and once

without making these changes (i.e. the parametiéirbevset to: tenure = 5 and penalty

= 0.45 at the beginning of the search, and willaentonstant till the optimization loop

terminates). Table 2 below shows how objectives®&are reached.

Table 2. Changing search parameters and the netgidd order

Set | Trial Parameter values Outer loop; shaking Inner loop; local search
X tenure = 5 penalty = 0.4 Intra Relocate Merge And Relditaties
X tenure = 5 penalty = 0.45 Two-Opt Cross

X 1 tenure = 5 penalty = 0.4 Or-Opt FP Relocate
X tenure = 5 penalty = 0.45 Exchange

X tenure = 5 penalty = 0.4 Relocate

X tenure = 5 penalty = 0.45 Merge And Relocate Topirs InttecRe

X tenure = 5 penalty = 0.45 Cross Two-Opt

X 2 tenure = 5 penalty = 0.4 FP-Relocate Or-Opt

X tenure = 5 penalty = 0.45 Exchange

X tenure = 5 penalty = 0.45 Relocate

X tenure = 5 penalty = 0.45 Relocate Merge And Relocate Tgurs
X tenure = 5 penalty = 0.45 Or-Opt Intra-Relocate
X 3 tenure = 5 penalty = 0.4 Exchange Cross

X tenure = 5 penalty = 0.45 Two-Opt

X tenure = 5 penalty = 0.45 FP-Relocate
X tenure = 5 penalty = 0.45 Merge And Relocate Topirs Relocate
X tenure = 5 penalty = 0.4 Intra-Relocate Or-Opt

X 4 tenure = 5 penalty = 0.4 Cross Exchange

X tenure = 5 penalty = 0.4 Two-Opt

X tenure = 5 penalty = 0.45 FP-Relocate

X Dynamically changing Intra Relocate Merge And Relocatard g
X Dynamically changing Two-Opt Cross

X 5 Dynamically changing Or-Opt FP Relocate

X Dynamically changing Exchange

X Dynamically changing Relocate

X Dynamically changing Merge And Relocate Toufs Intra-Rakoc

X Dynamically changing Cross Two-Opt

X 6 Dynamically changing FP-Relocate Or-Opt

X Dynamically changing Exchange

X Dynamically changing Relocate

X Dynamically changing Relocate Merge And Relocate Toprs
X Dynamically changing Or-Opt Intra-Relocate
X 7 Dynamically changing Exchange Cross

X Dynamically changing Two-Opt

X Dynamically changing FP-Relocate

X Dynamically changing Merge And Relocate Toufs Relocate

X Dynamically changing Intra-Relocate Or-Opt

X 8 Dynamically changing Cross Exchange

X Dynamically changing Two-Opt

X Dynamically changing FP-Relocate
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To see which of the eight configurations produce kbwest traveling cost,
problem sets, based on the work of ChristofidesigRifides and Beasley, 1984), 13
data sets; Fisher (Fisher, Jakumar and Wassenti®®4,), 5 data sets; and Taillard
(Taillard, 1994), 12 data sets, will be used. Megnia total of 30 data sets will be
tested, each set is run eight times for differemtfigurations of parameter values and
neighborhood order. It is worth mentioning thoughttthese data sets were originally
generated for the dynamic vehicle routing probleithwo time windows; therefore,
the sets had to be modified to fit the scope of ghudy (i.e. time windows were added
to all visits, and pickup and delivery pairs wereated). This, in turn, will make it
difficult to compare the results with the origirddta sets, but these data sets were the
closest to the problem under study, and theref@ewsed. All tests will be run on a
standard Pentium 4 PC with a CPU clock speed oG28, 1 GB of RAM, and Hyper

Threading technology.

After obtaining the results, a paired t-test wél lssed to investigate the effect of
dynamically changing search parameters versusigdtie search parameters to fixed
values and maintaining them throughout the seamiiy since there are four
neighborhood orders, the paired t-test will be cameld four times, once under each
neighborhood order. Tables 3 and 4 below illusttiaéeprocedure. Alpha is set to 0.05.

Table 3. Results table template

Search parameters constant Search parameters idgtigohanging

Order1| Order2 Order3 Orderl4 Orderl Order2 de®8 | Order 4

Trial 1 Trail 2 Trail 3 Trial 4 Trail 5 Trial 6 Tal 7 Trial 8

Set #| Obj. fun.| Obj. fun.| Obj. fun.| Obj. fun.| Obj. fun.| Obj. fun.| Obj. fun.| Obj. fun.
1 X111 X121 X131 X141 X112 X122 X132 X142
2 Xo11 X221 X231 X241 X212 X222 X232 X242
30 X3011 X3021 X3031 X3041 X3012 X3022 X3032 X3042
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Table 4. Paired t-test template

Set # Order 1 Order 2 Order 3 Order 4
difference difference difference difference

1 X111 - X112 X121 - X122 X131 - X132 X141 - X142

2 X211 - X212 X221 - X222 Xoz1 - X232 Xoa1 - X242

30 Xa011- X3012 | X3021- X3022 | X3031- X3032 | X3041- X3042

Average differencer) D1 Do D3 Da4

Difference standard

deviation &) So1 Sp2 b3 Soa

Test statistic (J) T T, T3 Ty

ta /12,n-1 tl t2 t3 t4

p-value R P2 Ps Pa

95% CI for mean

difference Cly Cla Cls Cla
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RESULTS, ANALYSIS, AND DISCUSSION

4.1  Validation and verification

As mentioned in section 1.1 the solution to a Vehiouting problem with time
windows is a routing plan (a sequence) for eachclelspecifying the locations to visit, the
order of the visits, and the arrival and departurees for each visit (scheduling visits); the
solution must satisfy all problem constraints. Angée solution is presented next and verified
against problem constraints; problem set numbetr20,6 will be used for this illustration.
As shown in table 1 below, the objective functi@iue, for problem set 20, is 2831.4; which
is the total distance traveled by all vehicless lassumed that 1 unit of distance is equal to 1
unit of cost, and the vehicles have no fixed cesg.(a rent cost). Summing the costs of all

vehicles gives the total cost of the objective fiorc

The route of each vehicle, starting and endingpatdepot, a long with the arrival and
departure times to and from each node, are alssepted. All arrivals are within the
specified time windows of the set. For example,islelt reaches visit33 at time 46.9142,
which is within the specified time window for thasit (0 ~ 231), waits O time units before
the time window opens, does the pickup serviceditirhe units, and then travels for 14.8661
time units to reach its next destination (visit34%it34 is the delivery pair of visit33. Visit34
is reached at 71.7802, which is also within itsetimindow (0 ~ 232). Hence, time window
constraints are satisfied. In addition, both thekpp and delivery (visit33 and visit34) are
made by the same vehicle and the pickup is maderddiie delivery. The same reasoning
applies to all other visits and all other probleetss Table 1 and figures 1 — 3 characterize
problem set 20, validation details for vehicle & am tables 2 and 3, and the remaining

problem instances are in appendix 3.
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Table 1. Problem characteristics for set numbetr20,6

Set Static Dynamic | edog, Parameter Shaking Local search Initial Final
# y values Neighborhood | Neighborhood | Solution Solution
20 | 1-82| 83-220 0412  Dynamid ™Mer9€and |\ Relocate| 884273  2831.44
Relocate
20 1~82 | 83~220| 0.412 Dynamic Cross Two-Opt
20 1~82 | 83~220| 0.412 Dynamic FP-Relocate Or-Opt
20 1~82 | 83~220| 0.412 Dynamic Exchange
20 | 1~82 | 83~220| 0.412 Dynamic Relocate
+ static nodess dynamic node#
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Pickup | Delivery Pick_up D_eliv_ery Pickl_Jp Delivgry Se_rvice D_rop Ava_ilable
Min Time Min Time Max Time | Max Time Time Time Time
visit33 visit34 0 0 231 232 10 10 0
Visits5 Visit56 0 0 247 293 10 10 0
visit57 visit58 0 0 280 299 10 10 0
Visit65 Visit66 0 0 254 359 10 10 0

Table 3. Validation of the model based on problet2§ trial 6 — vehicle 1

VehiclelTotal cost = 148.569 Fixed cost = 0 Cost coefficients = Dist@tic

Route: depot-> visits57 = Visit33 > visit34 > visite65 > visit55 > visit58 - visit66 > visit56 - depot

Time: depot [0], delay [0 travel [23.0217], wait [OP> visit57 [23.0217], delay [10P travel [13.8924], wait
[0] - visit33 [46.9142], delay [10p> travel [14.8661], wait [0]> visit34 [71.7802], delay [10> travel
[41.7732], wait [0]> visit65 [123.553], delay [10P travel [4.47214], wait [0}> visit55 [138.026], delay [10
-> travel [1], wait [0]-> visit58 [149.026], delay [10P travel [11.1803], wait [O}> visit66 [170.206], delay
[10] - travel [1], wait [0]> visit56 [181.206], delay [10P travel [37.3631], wait [0} depot [228.569]

Transit Sum[228.569]

Distance depot [0] delay [OP> travel [23.0217], wait [0P> visit57 [23.0217], delay [OP> travel [13.8924],
wait [0] = visit33 [36.9142], delay [0p> travel [14.8661], wait [0}> visit34 [51.7802], delay [0P> travel
[41.7732], wait [0]-> visite5 [93.5534], delay [0P> travel [4.47214], wait [0P> visit55 [98.0256], delay [0
-> travel [1], wait [0]> visit58 [99.0256], delay [0P> travel [11.1803], wait [0 visit66 [110.206], delay [0
-> travel [1], wait [0]-> visit56 [111.206] delay [0 travel [37.3631], wait [0}> depot [148.569]

Transit Sum 148.569

Vehicle2 Total cost = 192.05 Fixed cost = 0 Cost coefficiedistance [1]

Vehicle3 Total cost = 130.477 Fixed cost = 0 Cost coeffisidistance [1]

Vehicle4 Total cost = 88.3736 Fixed cost = 0 Cost coeffisidistance [1]

Vehicle5 Total cost = 208.919 Fixed cost = 0 Cost coeffisidbistance [1]

Vehicle6 Total cost = 108.338 Fixed cost = 0 Cost coeffisidbistance [1]

Vehicle7 Total cost = 93.8076 Fixed cost = 0 Cost coeffisidbistance [1]

Vehicle8 Total cost = 167.074 Fixed cost = 0 Cost coeffisidbistance [1]

Vehicle9 Total cost = 202.768 Fixed cost = 0 Cost coeffisidbistance [1]

Vehicle10 Total cost = 21.6734 Fixed cost = 0 Cost coefficieristaice [1]

Vehiclell Total cost = 140.275 Fixed cost = 0 Cost coeffici®istance [1]

Vehicle12 Total cost = 122.024 Fixed cost = 0 Cost coeffici®istance [1]

Vehicle13 Total cost = 202.49 Fixed cost = 0 Cost coefitsieDistance [1]

Vehicle14 Total cost = 90.7877 Fixed cost = 0 Cost coefficieristaice [1]

Vehicle15 Total cost = 72.7513 Fixed cost = 0 Cost coefficieristaice [1]

Vehicle16 Total cost = 42.4945 Fixed cost = 0 Cost coefficieristaice [1]

Vehiclel7 Total cost = 48.4243 Fixed cost = 0 Cost coefficieristaice [1]

Vehicle18 Total cost = 127.933 Fixed cost = 0 Cost coeffici®istance [1]

Vehicle19 Total cost = 138.792 Fixed cost = 0 Cost coeffici®istance [1]

Vehicle20 Total cost = 102.149 Fixed cost = 0 Cost coeffici®istance [1]

Vehicle21 Total cost = 111.046 Fixed cost = 0 Cost coeffici®istance [1]

Vehicle22 Total cost = 117.463 Fixed cost = 0 Cost coeffici®istance [1]

Vehicle23 Total cost = 152.724 Fixed cost = 0 Cost coeffici®istance [1]

Total Cost = 2831.4Number of vehicles used 23Number of visits performed= 220
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4.2  Analysis and discussion

Next, the results are presented and analyzed lmasebjectives 2 and 3 of this study
(i.e. investigating the effect of changing the iigrhood order on solution quality and
solution speed, and investigating the effect ofadgitally changing search parameters on

solution quality and solution speed), this is donsections 4.2.1 and 4.2.2

In section 4.2.3the online algorithm is assessed using competitnadysis (discussed
in section 2.4). This is done as follows: for evprgblem set 8 trials were run (as a result of
changing neighborhood orders and search parameters)of these 8 trials produced the
minimum objective function value for that set; gedtings at which the minimum value was
observed, per set, are used to solve the sameepnat@t again but assuming that all requests
are static, and known in advance at the time ofer@lanning. Meaning, the static version
will have less constraints as the dynamic requestsh are now assumed to be static, can be
inserted into any part of the routing plan with regards to their realization time (the
realization time is now considered to equal ze@f)course, competitive analysis is usually
run against a static version of the problem, solweth an offline algorithm capable of

producing aroptimal solution; however, in this case, the static versibthe problem isJp-

hard, there is not a known optimal solution to camepto; hence, the comparison will be
made against the solution obtained with less camg. Such analysis will show how the
objective function could have been lower had adl ilformation been available at the route
planning phase. Finally, in section 4.2.4, someesplaions are made about how the degree

of dynamism affects the percentage of rejected mynaequests.
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4.2.1 Analysis and discussion — objective function

Based on the experimental procedure (section 3h@®),results, for the objective

function, for the 30 trials are in table 4 below.

Table 4. Results table - objective function

Search parameters constant Search parameters awatlsgirohanging

Set| Order1| Order2 Order3 Order4 Orderl Ordgr2 e®O8d| Order4

# Trial 1 Trail 2 Trail 3 Trial 4| Trail5| Trial 6 Tal 7 Trial 8
Obj. fun.| Obj. fun.| Obj. fun.| Obj. fun.| Obj. fun.| Obj. fun.| Obj. fun.| Obj. fun.

1 | 2122.20| 1974.38 2063.45 2072.f1 207271 1974.3828.32| 2072.71
2 | 1250.91| 1264.39 1264.39 1201.15 1209.44 1201.2517.49| 1280.97
3 | 2212.00f 2290.04 1929.91 2096.p8 2226.78 2238.5343.25| 1972.29
4 | 2143.21] 2284.21 2055.71 2284.p1 213044 2284.2017.80| 2284.2]
5 | 1718.17| 1779.20 1588.04 1536.B0 1867.43 1895.5222.29| 1779.14
6 | 2722.28| 2664.6% 2640.65 2751.47 272228 2618.8853.97| 2572.13
7 | 1539.09| 1426.4% 1542.54 1667.p7 1533.62 1602.4833.39| 1667.97
8 | 2715.61| 2656.26 2492.65 2584.p5 2758.65 2688.9655.26| 2743.94
9 | 3187.74| 3539.37 3419.05 3539.B7 3373.77 3539.3#46.82| 3231.09
10 | 2609.37| 2541.69 2738.94 2542p2 244593 254p2A721.51| 2488.14
11 | 3361.17| 3332.61 3298.90 3098.p7 3311.17 3245.9934.84| 3098.27%
12 | 3247.96] 3297.96 3165.24 3417[)1 3233.49 3385.2B57.77| 3345.64
13 | 3501.75| 3246.64 3370.01 349233 3202.48 345[/.3843.55| 3427.8(
14 | 3613.18] 3441.99 3245.69 3227.31 3295.72 3343.3853.77| 3333.34
15 | 3939.70| 3857.04 3740.19 3698p4 3774.59 3811.40949.45| 3698.24
16 | 2568.28| 2471.5% 2552.15 245148 2347.08 2127.P®72.98| 2034.83
17 | 2457.93] 2560.2]1 2365.712 253712 2600.02 2280.2B17.76| 2160.65
18 | 3049.40| 2973.01 3207.35 298534 3181.62 3272.2870.62| 2905.65
19 | 4026.65| 3777.83 3921.51 3609.p0 3812.42 3575.8824.77| 3737.37%
20 | 3060.29| 273291 3348.14 30478 3022.75 2831.3098.70| 2662.99
21 | 3128.74| 3353.55 3450.16 3285.p6 3386.31 328[7.8428.97| 3385.63
22 | 4523.01| 4624.70 4154.66 4267 Jl3 4548.13 472B48568.10| 4528.84
23 | 3537.66| 3754.80 3788.04 361436 3604.43 3641.3459.53| 3690.06
24 | 2854.61| 284298 2896.05 2960.p1 2939.76 2875.3260.34| 2828.84
25 | 3167.00f 3051.52 3033.59 3082.85 3084.74 2884.3505.17| 3106.5(
26 | 2134.21| 2193.18 2193.18 2355.p1 2739.79 2473.3226.52| 2598.64
27 | 3136.89| 334257 3052.60 3038.L7 3105.16 298[.3806.17| 2992.03
28 | 3925.67| 4900.93 3932.88 4103.l12 4167.33 40284£853.63| 4047.09
29 | 4176.09| 4133.42 4183.21 4205[5 4236.64 42364262.76| 4115.71
30 | 4763.65| 4601.22 4963.99 470263 4914.05 4903.8544.16| 4723.93
Before using the paired t-test, two issues shoutd checked; the probability

distribution of thedifferences (which must be normal), and the correlation betwie pairs
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test to obtain accurate results even though n—fedsgf freedom will be lost). Starting with
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the normality test, a normal probability plot faah of the four differences is created, and the

Anderson-Darling test is used with an Alpha of 0.9ée figures 4 — 7.
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Clearly some outliers exist, but most of the d&tens to follow a normal distribution,
and all the p-values for the Anderson-Darling test greater than 0.01, which means there is
not enough evidence to reject the null hypothes$ishe data being normal. As for the
correlation between pairs, the correlation coedfitifor each of the order configuration is
calculated (i.e. a total of four correlation coeitnts).

Pearson correlation of Trial 1 and Trail 5 = 0.9%#/alue = 0.000

Pearson correlation of Trail 2 and Trial 6 = 0.98#/alue = 0.000
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Pearson correlation of Trail 3 and Trial 7 = 0.979/alue = 0.000

Pearson correlation of Trial 4 and Trial 8 = 0.978/alue = 0.000

The strong correlation necessitates the use gbdired t-test. Results for the tests are in table

5, and box plots are in figures 8 — 11.

Table 5. Paired t-test table, Alpha = 0.05

Set # Order 1 Order 2 Order 3 Order 4
difference difference difference difference
1 49.49 0.00 34.93 0.00
2 41.47 63.14 -53.10 -79.82
3 -14.78 56.46 -313.54 124.29
4 12.77 0.00 38.11 0.00
5 -149.26 -116.32 -134.25 -242.84
6 0.00 50.77 -113.32 179.34
7 5.47 -176.03 109.15 0.00
8 -43.04 -27.69 -163.11 -159.39
9 -186.03 0.00 -26.97 308.32
10 163.44 -0.78 17.43 54.77
11 50.00 85.62 164.06 0.00
12 14.47 -87.27 7.47 72.03
13 299.27 -210.94 -73.54 64.53
14 317.46 98.51 91.92 -106.03
15 165.11 45,95 -309.26 0.00
16 221.20 344.46 279.17 416.65
17 -142.09 279.26 147.96 376.47
18 -132.22 -299.89 236.73 79.69
19 214.23 202.79 96.74 -127.47
20 37.54 -98.49 250.04 384.69
21 -257.57 66.48 21.79 -100.37
22 -25.12 -103.76 -413.44 -261.72
23 -66.77 113.04 328.51 -75.70
24 -85.15 -32.44 -164.29 131.37
25 82.26 166.57 -71.58 -23.65
26 -605.58 -280.69 -33.34 -242.74
27 31.73 355.22 46.43 46.14
28 -241.66 872.64 -320.75 56.03
29 -60.55 -103.22 -79.55 89.98
30 -150.40 -302.13 119.83 -21.30
Average differencer) -15.1 32.0 -9.3 31.4
Difference standard 183.4 231.8 183.3 175.0
deviation &)
Test statistic (3) -0.45 0.76 -0.28 0.98
tyion1 2.045 2.045 2.045 2.045
p-value 0.654 0.455 0.782 0.333
95% Cl for mean (-83, 53) (-54, 118) (-77, 59) (-33, 96)

difference
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Figure1Q. Box plot for neighborhood order 3. Alpha = C
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Figure 11. Box plot for neighborhood order 3. Alph@.05

The p-values for all neighborhood orders suggestttiere is not enough evidence to

reject the null hypothesis of the difference beirgo; hence, the results favor the conclusion

that the objective function will not improve whehetsearch parameters are dynamically

changed, at least in the manner described heraliféour neighborhood orders. However,

looking closer at how the dynamic change affects dbjective function values for larger

problem instances (150 nodes and more), it caneba that the lowest objective function

values occur when search parameters dynamicallpgehato be more precise, out of 20

problem sets (problem sets 10 through 30), 15@&hthad the lowest values when the search

parameters were dynamically changing. See tabled figure 12. Minimum values are

highlighted.
Table 6. Minimum objective function values

Set Fixed parameters Changing parameters
4 Trial 1 | Trial 2 Trial 3 Trial 4 Trial 5| Trial6| Tal7 | Trial 8

Obj. fun.| Obj. fun.| Obj. fun.| Obj. fun.| Obj. fun.| Obj. fun.| Obj. fun.| Obj. fun.
1 | 2122.20| 1974.38 2063.45 2072.fy1 2072 1974.38| 2028.54 2072.7{t
2 | 1250.91| 1264.39 1264.3 1201.15| 1209.44 1201.25 1317.49 1280|97
3 | 2212.00] 2290.04 1929.91( 2096.54 2226.78 2233.58 2243|45 1972.29
4 | 2143.21| 2284.2]1 2055.71 2284.p1 213044 228{ 2017.60| 2284.2]
5 | 1718.17| 1779.20 1588.( 1536.30| 1867.43 1895.5p 1722.29 1779|14
6 | 2722.28| 2664.6% 2640.95 2751.47 272228 2618.8853.97| 2572.13
7 | 1539.09| 1426.45( 1542.54 1667.9f 1533.62 1602|148 1433.39 7.986
w2 (5:611n2656:24 2492.65( 258454 2758.66 2683.95 2655|76 2743.94
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9 | 3187.74 3539.Sﬂ 3419.06 3539.87 3373|77 3539.37 6.824 3231.05
10 | 2609.37| 2541.69 2738.94 2542| 244593| 2542.47 2721.51 2488.
11 | 3361.17| 3332.6]1 3298.90 3098.p7 3311.17 3245.3934.84| 3098.27
12 | 3247.96| 3297.9¢ 3165.44 3417)1 3233.49 338| 3157.77| 3345.64
13 | 3501.75| 3246.64 3370.01 3492 3202.48| 3457.58 3443.5p 3427.
14 | 3613.18| 3441.99 3245.49 322731 3295.72 334| 3153.77| 3333.34
15 | 3939.70| 3857.04 3740.19 3698.p4 377459 381[148@49.45| 3698.24
16 | 2568.28| 2471.5% 2552.15 245148 2347.08 21272®72.98| 2034.83
17 | 2457.93| 2560.2]1 2365.12 25372 2600.02 228p2B17.76| 2160.65
18 | 3049.40| 2973.01 3207.35 298534 3181.62 327p2970.62| 2905.65
19 | 4026.65| 3777.83 3921.91 3609.p0 3812 3575.04( 3824.71 3737.3|7
20 | 3060.29| 2732.91 3348.14 30478 3022.75 283[..3098.70| 2662.99
21 | 3128.74| 3353.54 3450.76 3285.p6 3386[31 3287.07 8.944 3385.63
22 | 4523.01| 4624.7( 4154.66| 4267.13 4548.13 4728.46 4568|10 4528.85
23 | 3537.66| 3754.80 3788.04 361436 3604.43 364| 3459.53( 3690.04
24 | 2854.61| 2842.98 2896.05 2960.p1 2939.76 287p.3@60.34| 2828.84
25 | 3167.00] 3051.52 3033.39 30825 3084 2884.95| 3105.14 3106.50
26 | 2134.21| 2193.18 2193.1B 2355.91 2739|79 2473.87 6.324 2598.65
27 | 3136.89| 334257 3052.40 3038[L7 3105 2987.35| 3006.14 2992.083
28 | 3925.67| 4900.93 3932.88 4103.12 4167(33 4028.29 3.825 4047.09
29 | 4176.09| 4133.42 4183.41 4205[)5 4236.64 423p46262.76| 4115.77
30 | 4763.65| 4601.22| 4963.99 4702.68 4914.05 4903|35 4844.16 3.934

—&— Fixed parameters —#— Changing parameters
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Figure12. Effect of dynamically changing search parame- neighborhood order
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4.2.2 Analysis and discussion — running time

Using the paired t-test, to investigate the effettdynamically changing search
parameters, on the running time, will not be appate. As mentioned before, the normality
assumption is crucial to conducting the pairedst:thowever, in the running time case, the
probability distribution of the differences is fdrom the normal distribution. Data
transformation methods were considered, but, aghiey were inappropriate. Box-Cox
transformation simply did not work, as some of tla¢a (differences) were negative; on the
other hand, the Johnson transformation was capdbbpeoducing transformed normal data,
but the transformation function was very complidaéad difficult to interpret. Below is an
example of the Johnson transformation made to ififrer@hces between trials 2 and 6 of the
running time data, clearly, in figure 1e transformation did produce normal data, but the
transformation function is too complicated. The eathing applies for the remaining

difference data.

Probability Plot for Original Data Select a Transformation
99 N 30 - 0.49
[}
° AD 10.537 ?_g 0.44 .\
P-Val 0.005
90 alue < 2 0.3 \ any
€ S ,
8 < L 021 B °
] g
o7
10 a 0.04 . - - - -
. 0.2 0.4 0.6 0.8 1.0 1.2
1 ! ! ! | Z Value
-0 0 50 100 (P-Value = 0.005 means <= 0.005)
Probability Plot for Transformed Data
»? ° N 30
90 /,;\_E\’,ame 8:3613(23 P-Value for Best Fit: 0.412479
Z for Best Fit: 0.49
€ Best Transformation Ty pe: SU
() 50 Transformation function equals
E -0.0504916 + 0.490650 * Asinh( ( X + 0.00611707 )/ 0.0999765 )
10
()
1 . T T .
-2 0 2 4

Figure13. Johnson transforman for the difference data (trials 2 anc
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In light of the difficulty to use the paired t-tesbme other small observations were

made instead. It can be seen in table 7 that thedbrunning times occurred mostly in trials

2 and 6 (27 times out 30), which both have the samamghborhood order (Shaking

Neighborhoods: Merge And Relocate, Cross, FP-Rtdp&xchange, Relocate. Local search

Neighborhoods: Intra-Relocate Tours, Two-Opt, Ot)O@his could indicate that the

neighborhood order used in trials 2 and 6 prodtleesowest running time for the algorithm.

Table 7. Results table — running time (min)

Fixed parameters Changing parameters

Set | Order 1| Order2| Order3 Order[4 Ordefl Ordgr2 e®8d| Order 4

# Trial 1 | Trail 2 Trail 3 | Trial4]| Trail5 Trial 6 Tal 7 Trial 8

Time Time Time Time Time Time Time Timg

1 0.538 0.297 1.804 0.697 0.66] 0.292 1.779 0.671

2 1.901 0.710 1.725 1.745 1.76] 0.658 1.940 1.298

3 1.466 1.136 3.373 1.734 1.41y 0.925 2.416 1.446

4 0.361 | 0.186 0.354 0.257 0.359 0.209 0.559 0.245
5 2.452 | 0.488 2.743 1.113 3.199 0.589 1.878 0.9p6
6 1.056 | 0.491 2.073 0.840 1.202 0.64( 2.560 1.0p8
7 0.653 0.348 0.790 0.334 0.53% 0.356 0.8 0.313

8 0.682 | 0.411 0.874 0.488 0.700 0.458 0.931 0.5p4
9 0.550 0.280 0.878 0.457 0.35¢ 0.276 0.738 0.347
10 2.065 | 0.846 1.104 1.106 1.108 1.111 1.110 1.1p6
11 1.401 0.923 1.669 0.892 1.29¢ 0.745 1.427 0.889
12 5.861 2.943 11.501 2.467 10.409 3.164 6.604 3.91p
13 5.829 [ 2.531 12.364 2.983 9.001 2.807 6.624 3.9p7
14 10.760 2.735 9.699 2.673 7.18] 1.991 9.380 2.545
15 5.264 2.083 4.755 2.734 5.09( 1.820 5.190 2.282
16 18.727| 2.699 8.913 4.831 14.909 3.508 8.54p 7.003
17 13.766( 2.373 7.390 3.739 15.07% 3.439 8.43D 3.285
18 19.680| 3.720 30.103 5.410 13.316 3.994 15.479 4.976
19 7.007 2.774 7.001 4.639 5.38y 2.657 5.924 2.751
20 9.471 1.792 6.268 2.649 5.32] 1.353 5.910 1.459
21 9.231 1.348 6.326 2.582 5.41] 1.194 5.396 1.466
22 4,112 | 0.917 3.878 1.143 3.360 1.439 6.360 1.3B4
23 1.843 0.814 1.344 0.857 1.428 0.9d0 132.¢ 0.791

24 16.724 1.964 28.884 2.678 20.33 1.960 29.347 3.830
25 17.179 2.079 28.984 3.84% 20.29 1.956 29.271 3.789
26 96.893| 133.130 130.224 12.280 62.5| 9.174 99.228 | 11.80%
27 35.945| 1.105 48.368 3.620 22.294 2.838 33.576 3.922
28 79.156 3.232 67.332 7.77Q 21.24¢ 1.686 18.631 3.314
29 17.404 2.730 13.26% 3.29¢ 3.44{ 1.899 13.048 4.827
30 3.761 1.454 4.284 2.379 3.66y 1.379 4.550 2.195
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4.2.3 Analysis and discussion — competitive analgs

Solving the same problem sets again, under statiditons, produced the results in

table 8 (page 66 he following is noted:

Dynamic problem instances, were some visits cooldbe inserted (likes of: set 9,

13, 15, 17...), may have confusing competitive analyetios; for example, problem

set 28 had 17 unperformed visits with a total afsB925.67; however, the static

version of the same set had only 2 unperformedswgith a total cost of 4011.990,

this contradicts what is expected (i.e. a staticsiod of a problem should have a
lower cost, as there are less constraints), bungitae fact that the dynamic problem
was not solved completely (17 unperformed visits®, added extra cost, of the static
problem, is attributed to the increased numbertéfed requests (only 2 visits were
unperformed).

Given the first remark, the competitive ratio isenpreted, here, as the portion of the
static (lower) solution that the online algorithencachieve. For example, in problem
set 8, the online algorithm can reach 0.76 of th#cs(lower) solution; meaning, had

all the requests been known in advance, the rowplisng for problem set 8 would have
cost 1891.13 units, instead of 2492.65 (i.e. d tté01.52 in savings).

The last column in table 7 shows the value of kmowvall relevant information before

hand (i.e. how much savings could have been gained)
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Table 8. Competitive analysis ratios

Dynamic Static Comp. _

Seti# Solution | Vehicles Unpgrf_ormed Solution | Vehicles Unpe_‘rf_ormed ratio Gain
visits visits

1 1974.38 14 0 1209.01 7 0 0.6L 765.B7
2 1201.15 10 0 1146.18 10 0 0.95 54.97
3 1929.91 11 0 1337.12 8 0 0.6P 592J79
4 2017.6 18 0 1275.06 8 0 0.6B 742.b4
5 1536.3 13 0 1398.69 11 0 0.91L 137p1
6 2572.13 17 0 2095.12 11 0 0.811 47701
7 1426.45 17 0 1040.04 11 0 0.78 38641
8 2492.65 16 0 1891.13 11 0 0.76 6012
9 3187.74 26 1 2259.34 13 0 0.711 928140
10 | 2541.69 17 0 1887.78 11 0 0.74 65391
11 | 3098.27 27 0 2185.610 16 0 0.71 912.60
12 | 3157.77 21 0 2326.610 16 0 0.74 831.16
13 | 3202.48 30 4 2625.810 15 0 0.82 576.61
14 | 3153.77 16 0 2378.240 15 0 0.75 775.52
15 | 3698.24 30 13 2830.180 18 0 0.77 868.06
16 | 2034.83 17 0 1760.340 16 0 0.87 274.47
17 | 2160.65 30 10 1992.700 17 1 0.92 167.95
18 | 2905.65 18 0 2351.890 17 0 0.81 553.76
19 | 3575.04 27 0 2949.640 21 0 0.83 625.36
20 | 2662.99 22 0 2111.540 16 0 0.79 551.42
21 | 3128.74 30 6 2624.330 17 2 0.84 504.41]
22 | 4154.66 30 10 3075.630 19 0 0.74 | 1079.08
23 | 3459.53 30 9 3076.910 23 10 0.89 382.62
24 | 2828.84 27 0 2112.040 19 3 0.75 716.76
25 | 2884.95 30 2 2277.640 17 0 0.79 607.27
26 | 2134.21 22 0 1811.3J0 14 0 0.85 322.91
27 | 2987.35 28 0 2117.390 15 2 0.71 869.96
28 | 3925.67 30 17 4011.990 23 2 1.02 | -86.32
29 | 4115.77 27 0 NA NA NA NA NA
30 | 4601.22 30 0 3406.790 24 24 0.74 | 1194.4y

* Static problem could not be solved

4.2.4 Analysis and discussion — rejected visits

Newly arriving requests with wide time windows aasily satisfied compared to
requests with tight time windows. Theeod,,, discussed in section 2.5.1, is one measure to
assess the hardness of the problem based on thevtmdows of the newly arriving requests.
Most of the data sets used were intentionally mediby changing theedod,,. For example,
in table 9 and figures 14 ~ 17 (pages 68 and 68plem sets 10 and 11 are exactly the same,

except that problem set 11 has tighter time windfovsits dynamic requests; hence, it is
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expected to have a higher objective function valnd a higher number of rejected dynamic

requests. Same thing applies to many other segsrds 18 ~ 21 (pages 70 and 71) show how

various problem sets with highdod,, have a higher percentage of rejected requests

(percentage rejected requests out of the dynamiests).

Table 9. Problem sets with differesttod,

Set # Static Dynamic edodtw Type
1 1~20 21 ~ 58 0.52 NA
2 1~50 51 ~ 68 0.17 NA
3 1~30 31~88 0.46 NA
4 1~18 19 ~ 96 0.61 NA
5 1~60 61 ~ 98 0.26 NA
6 1~46 47 ~ 104 0.45 NA
7 1~12 13~110 0.70 NA
8 1~32 33~130 0.52 easy
9 1~32 33~130 0.62 hard
10 1-~16 17 ~ 154 0.58 easy
11 1~16 17 ~ 154 0.69 hard
12 1~48 49 ~ 166 0.51 easy
13 1~48 49 ~ 166 0.60 hard
14 1~40 40 ~ 178 0.48 easy
15 1~40 40 ~ 178 0.63 hard
16 1~58 59 ~ 196 0.46 easy
17 1~58 59 ~ 196 0.60 hard
18 1~70 71~ 208 0.40 easy
19 1~70 71~ 208 0.53 hard
20 1~82 83 ~ 220 0.41 easy
21 1~82 83 ~ 220 0.54 hard
22 1-~66 67 ~ 244 0.51 easy
23 1~26 27 ~ 244 0.70 hard
24 1~150 151 ~ 268 0.32 easy
25 1~150 151 ~ 268 0.36 hard

26 1~140 141 ~ 298 0.26 easy
27 1~140 141 ~ 298 0.29 hard
28 1~180 181 ~ 308 0.30 NA
29 1~50 51 ~ 308 0.55 NA
30 1~22 23 ~ 320 0.68 NA
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CONCLUSION AND RECOMMENDATIONS

51 Conclusion
The General Pickup and Delivery Problem with Timadéws has many variants, all

of which are classified as-hard problems; which means, there is no known rpmtyial

time algorithm capable of producing an optimal soly at least for large problem instances.
As such, heuristic and metaheuristic methods arellys applied to gainnear optimal
solutions in reasonable running times. In this gtah online hybrid metaheuristic based on
Variable Neighborhood Search, Tabu Search, and gduldbcal Search was created and
tested on one variant of the general model (i.e Dynamic Pickup and Delivery Problem

with Time Windows).

Two major issues were addressed for the onlineithylbine effect of dynamically
changing a metaheuristic’'s search parameters, gluha search, on solution quality and
algorithm running time, and the effect of changanghetaheuristic’s neighborhood order on
solution quality and algorithm running time. Theg@ithm was tested against problem
instances based on the works of Christofides, 18 skts; Fisher, 5 data sets; and Taillard, 12

data sets; however, these sets were modified ledadime windows to fit this study.

It was found that, forlarge problem instances, dynamically changing search
parameters (starting with Tenure = 5 and Penaldy45, then diversifying the search, when
no improving moves are found for the past 10 iters, to Tenure = 12 and Penalty = 0.8,
and finally, intensifying the search again by usthg original parameter values) produced
better solutions more often, although there wasstatistical evidence to support this.

However, dynamically changing the search paramelidraot have any obvious effect on the
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algorithm’s running time. In addition, the neighbood order did not seem to have an effect
on the solution quality, but the running time wésiously lower for a specific neighborhood
order, compared to all other orders. It was foumat @rranging the neighborhoods in this
manner: Shaking Neighborhoods: Merge And Reloc&mss, FP-Relocate, Exchange,
Relocate; Local search Neighborhoods: Intra-Redaiurs, Two-Opt, Or-Opt, produced
lower running times fomost problem instances (27 times out of 30). This casion could
not be supported by statistical tests, as the ragaired some sort of transformation that are

too complicated and will make any kind of conclusiavery difficult to interpret.

Furthermore, the online algorithm was assesseddbasethe competitive analysis
concept; although exact adherence to the conceptnetapossible, due to the nature of the

selected problem (i.e. it beingm-hard and no optimal solution is known for the istat

versions of the problem instances used). All pnobilestances were solved again under static
conditions (i.e. all visits were assumed to be kmat the route planning time, and no new
visits appeared), this provided benchmark solutitmsvhich the online algorithm can be
compared to; meaning, the static solutions arebis possible solutions that the online
algorithm can achieve. It was found that, the ankiigorithm was capable of reaching any
where between 0.61 and 0.95 of the solution obdalne its offline algorithm counterpart
(static solution). This is a good indication of hawell the developed algorithm can perform

under dynamic conditions.

Other conclusions, although not of primary intetesthis work, were made from the
results; it was shown that, for almost all problémstances, increasing the degree of
dynamism increased the number of rejected dynaegaests. This, of course, is expected,

but the way the problem sets were chosen mad#idudi to present irrefutable evidence of
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this notion; still, such evidence can be easilyaot#d with the appropriate selection of

problem sets.

52  Recommendations and futurework
Based on the above, the following recommendatidrsulsl be considered when
solving the dynamic pickup and delivery problemhatime windows:

» Dynamically changing search parameters, duringstéeech, has a higher chance of
producing better solutions for larger problem insts (150 nodes and more).

* When using Variable Neighborhood Search to soleepifoblem, this neighborhood
order has a higher chance of producing lower rumtimes compared to other orders;
Shaking Neighborhoods: Merge And Relocate, Crod3;RElocate, Exchange,
Relocate; Local search Neighborhoods: Intra-Regaurs, Two-Opt, Or-Opt.

* Integrating Tabu Search and Guided Local Searah tim Variable Neighborhood

Search framework does produce higher quality smistin shorter times.

With all the work that has been done, there atkastot of issues that require further
research, and future extensions can be built enwiork. Further research is required in the
following areas:

» Using a better methodology to select, and dynatyicdiange, search parameters,
likes of adaptive search and racing algorithms.

» Setting the running time of the online algorithm adimit that suits the problem
instance solved; meaning, instead of having theerdlgorithm run for a fixed time
limit (maximum of 15 minutes in this study), theaning time should be set such that

the number of idle vehicles on the road is minimum.
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* The number of dynamic requests that are acceptédrebeunning the online
algorithm was set, in this study, to 10; howevehetter approach is to allow it to
change such that the number of accepted requas@xisnum, while at the same time
preserving some excess capacity for the vehicleactept other requests that may
appear in the near future.

» Using the wait first strategy, instead of the driwvet strategy, if it proves to produce

shorter routes using the same number of vehicles.

As for future extensions, the following can be atlttethis work:
 Combining Variable Neighborhood Search with othewurstics that can further
enhance its diversification schemes, iterated Isearch would be a good option to
explore.
« Creating a better measure of degree of dynamisinctade the dependency of the
pickup and delivery pair.
* Applying the same algorithm to a stochastic versibthe problem, this will give a

better indication of how well it can be appliedatonore realistic situation.
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Appendix 1 — Neighborhood Structures Definition

Intra-route neighborhoods:

Intra-Relocate: This neighborhood modifies the soluby relocating individual
visits to a new position in the same route. Thigmegorhood is similar to Relocate,
except that it relocates visits to a new positionthie same route. Since it explores
fewer options for the relocated visit, this neigtifmnd is potentially smaller than
one created by Relocate.
Two-Opt: This neighborhood modifies the solutiontygaking two arcs and starts
looking for new neighbors at the place where tis taodification took place, in
specific the steps are:
1. Take an initial route.
2. Remove two arcs from the route, and try the otlossiple reconnection of
the remaining parts of the route.
3. If the cost has been reduced and if all constraangéssatisfied, go back to
Step 2.
4. End.
Example: in the below figure the neighborhood eliminaté® tcrossing by
destroying two arcs and creating two new arcs réiselting route is shorter. With
this neighborhood, directional flows between visitay be reversed. However, the

presence of tight time constraints can therefooeadese its effectiveness.
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Figure 1. Two-Opt neighborhood

Or-Opt: This neighborhood modifies the solutionrblpcating segments of visits in

the same route. In specific the steps are:

1.

2.

Start with an initial route.

Move parts composed of one visit elsewhere in dler.

If the cost has been reduced and if all constrairgssatisfied, go back to Step
2.

When all such moves have been tested, try moving p&the route composed
of two consecutive visits.

After testing all moves of parts composed of twasazutive visits, try moving

parts of the route composed of three consecutsitsyi

Example: in the following figure the neighborhood elimigatthe crossing by

destroying three arcs and creating three new Hreggesulting route is shorter.
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Figure2. Or-Opt neighborhoc

Inter-route neighborhoods:

» Cross: in a cross neighborhood the ends of tweemate exchanged: the first part
of route A is connected to the last part (end)onite B and the first part of route B
is connected to the last part (end) of route A.
Example: in the following figure the neighborhood elimieatthe crossing by

destroying two arcs and creating two new arcsrebalting routes are shorter.

ol

e T,

Figure 3. Cross neighborhood
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Exchange: in an exchange neighborhood, two viditsvo different routes swap

places if all constraints are still satisfied. Tmgthod can be generalized if more
than one visit of a route is exchanged at the saime. When a pair of visits is

exchanged, this neighborhood is useful for optingziroblems such as the Pickup-
and-Delivery Problem.

Example: in the following figure the neighborhood elimiratthe crossings by

destroying four arcs and creating four new aras résulting routes are shorter.

!
—o—O0—_ o

— T

Figure 4. Exchange neighborhood
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Appendix 2 — Data Sets and Results Summary

Table 1. Summary of problem instances

Set # Static Dynamic Total edody,
1 1~20 21 ~ 58 58 0.52
2 1~50 51 ~68 68 0.17
3 1~30 31~88 88 0.46
4 1~18 19 ~ 96 96 0.61
5 1~60 61 ~ 98 98 0.26
6 1~46 47 ~ 104 104 0.45
7 1~12 13~110 110 0.70
8 1~32 33 ~130 130 0.52
9 1~32 33 ~130 130 0.62
10 1~16 17 ~ 154 154 0.58
11 1~16 17 ~ 154 154 0.69
12 1~48 49 ~ 166 166 0.51
13 1~48 49 ~ 166 166 0.60
14 1~40 40~ 178 178 0.48
15 1~140 40~ 178 178 0.63
16 1~58 59 ~ 196 196 0.46
17 1~58 59 ~ 196 196 0.60
18 1~70 71~ 208 208 0.40
19 1~70 71~ 208 208 0.53
20 1~82 83 ~ 220 220 0.41
21 1~82 83 ~ 220 220 0.54
22 1~66 67 ~ 244 244 0.51
23 1~26 27 ~ 244 244 0.70
24 1~ 150 151 ~ 268 268 0.32
25 1~ 150 151 ~ 268 268 0.36
26 1~140 141 ~ 298 298 0.26
27 1~140 141 ~ 298 298 0.29
28 1~180 181 ~ 308 308 0.30
29 1~50 51 ~ 308 308 0.55
30 1~22 23 ~ 320 320 0.68
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Table 2. Results summary
, Initial Final . Max CPU | Unperformed
Set#| Trial# Solution | Solution Vehicles Time (min) visits
1 520.340 | 2122.20d 15 0.538 0
2 520.340 | 1974.38( 14 0.297 0
3 520.340 | 2063.450 15 1.804 0
1 4 520.340 | 2072.710 16 0.692 0
5 520.340 | 2072.710 16 0.663 0
6 520.340 | 1974.38( 14 0.292 0
7 520.340 | 2028.52( 14 1.779 0
8 520.340 | 2072.710 16 0.671 0
1 1291.750| 1250.91( 11 1.901 0
2 1291.750| 1264.39( 11 0.710 0
3 1291.750( 1264.39( 11 1.725 0
2 4 1291.750| 1201.15( 10 1.745 0
5 1291.750| 1209.44( 10 1.763 0
6 1291.750| 1201.25( 10 0.658 0
7 1291.750| 1317.49( 13 1.940 0
8 1291.750| 1280.97( 12 1.298 0
1 626.248 | 2212.00d 16 1.466 0
2 626.248 | 2290.04d 17 1.136 0
3 626.248 | 1929.91d 11 3.373 0
3 4 626.248 | 2096.58( 15 1.734 0
5 626.248 | 2226.78( 16 1.419 0
6 626.248 | 2233.58( 16 0.925 0
7 626.248 | 2243.45( 16 2.416 0
8 626.248 | 1972.29( 13 1.446 0
1 380.253 | 2143.21d 19 0.361 0
2 380.253 | 2284.21d 23 0.186 0
3 380.253 | 2055.71d 19 0.354 0
4 4 380.253 | 2284.21d 23 0.257 0
5 380.253 | 2130.44d 19 0.359 0
6 380.253 | 2284.21( 23 0.208 0
7 380.253 | 2017.60d 18 0.559 0
8 380.253 | 2284.21( 23 0.245 0
1 1300.440| 1718.17( 15 2.452 0
2 1300.440| 1779.20( 17 0.488 0
3 1300.440| 1588.04( 14 2.743 0
5 4 1300.440| 1536.30( 13 1.113 0
5 1300.440| 1867.43( 19 3.199 0
6 1300.440| 1895.52( 20 0.589 0
7 1300.440| 1722.29( 16 1.878 0
8 1300.440| 1779.14( 17 0.906 0
6 1 1075.210| 2722.28( 19 1.056 0
2 1075.210| 2664.65( 19 0.491 0
3 1075.210( 2640.65( 17 2.073 0
4 1075.210| 2751.47( 19 0.840 0
5 1075.210| 2722.28( 19 1.202 0
6 1075.210| 2613.880 17 0.640 0
7 1075.210| 2753.970 19 2.560 | 0
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8 1075.210( 2572.13( 17 1.058 0
1 318.032 | 1539.09d 21 0.653 0
2 318.032 | 1426.45( 17 0.348 0
3 318.032 | 1542.54( 23 0.790 0
7 4 318.032 | 1667.97d 20 0.335 0
5 318.032 | 1533.62d 19 0.535 0
6 318.032 | 1602.48d 23 0.356 0
7 318.032 | 1433.39d 20 0.852 0
8 318.032 | 1667.97( 20 0.313 0
1 741.325 | 2715.610 18 0.682 0
2 741.325 | 2656.260 20 0.411 0
3 741.325 | 2492.65( 17 0.874 0
8 4 741.325 | 2584.55( 19 0.488 0
5 741.325 | 2758.65( 17 0.700 0
6 741.325 | 2683.95( 20 0.458 0
7 741.325 | 2655.76( 16 0.931 0
8 741.325 | 2743.94( 21 0.564 0
1 741.325 | 3187.740 26 0.550 1
2 741.325 | 3539.37( 29 0.280 1
3 741.325 | 3419.050 30 0.878 3
9 4 741.325 | 3539.37( 29 0.452 1
5 741.325 | 3373.77( 30 0.356 2
6 741.325 | 3539.37( 29 0.276 1
7 741.325 | 3446.02( 30 0.738 3
8 741.325 | 3231.05( 30 0.347 4
1 373.718 | 2609.37( 17 2.065 0
2 373.718 | 2541.69( 17 0.846 0
3 373.718 | 2738.940 20 1.104 0
10 4 373.718 | 2542.92( 16 1.106 0
5 373.718 | 2445.93( 15 1.108 0
6 373.718 | 2542.47( 17 1.111 0
7 373.718 | 2721.51( 20 1.110 0
8 373.718 | 2488.15( 15 1.106 0
1 373.718 | 3361.17( 29 1.401 0
2 373.718 | 3332.61( 28 0.923 0
3 373.718 | 3298.90d 30 1.669 1
11 4 373.718 | 3098.270 28 0.892 0
5 373.718 | 3311.17d 29 1.299 0
6 373.718 | 3246.99( 27 0.745 0
7 373.718 | 3134.84( 29 1.427 0
8 373.718 | 3098.27( 28 0.889 0
1 907.221 | 3247.96( 21 5.861 0
2 907.221 | 3297.96( 24 2.943 0
3 907.221 | 3165.240 22 11.501 0
12 4 907.221 | 3417.710 23 2.467 0
5 907.221 | 3233.49d 22 10.409 0
6 907.221 | 3385.23d 23 3.164 0
7 907.221 | 3157.77( 26 6.604 0
8 907.221 | 3345.680 25 3.910 0
13 1 907.221| 3501.75( 30 5.829 | 7
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2 907.221 | 3246.64( 30 2.531 11
3 907.221 | 3370.01C 30 12.364 5
4 907.221 | 3492.33( 30 2.983 8
5 907.221 | 3202.48( 30 9.001 15
6 907.221 | 3457.58( 30 2.807 6
7 907.221 | 3443.55( 30 6.624 4
8 907.221 | 3427.80C 30 3.927 8
1 794.224 | 3613.18( 20 10.760 0
2 794.224 | 3441.99( 18 2.735 0
3 794.224 | 3245.69( 19 9.699 0
14 4 794.224 | 3227.31C 16 2.673 0
5 794.224 | 3295.72( 16 7.183 0
6 794.224 | 3343.48( 17 1.991 0
7 794.224 | 3153.77C 18 9.380 0
8 794.224 | 3333.34( 18 2.545 0
1 794.224 | 3939.70( 30 5.264 18
2 794.224 | 3857.04( 30 2.083 15
3 794.224 | 3740.19( 30 4.755 19
15 4 794.224 | 3698.24( 30 2.738 19
5 794.224 | 3774.59( 30 5.096 19
6 794.224 | 3811.09C 30 1.820 15
7 794.224 |  4049.45( 30 5.190 13
8 794.224 | 3698.24( 30 2.282 19
1 800.524 | 2568.28( 27 18.727 0
2 800.524 | 2471.55( 26 2.699 0
3 800.524 | 2552.15( 30 8.913 1
16 4 800.524 | 2451.48( 25 4.831 0
5 800.524 | 2347.08( 24 14.909 0
6 800.524 | 2127.09C 21 3.508 0
7 800.524 | 2272.98( 23 8.549 0
8 800.524 | 2034.83( 17 7.013 0
1 800.524 | 2457.93( 30 13.766 15
2 800.524 | 2560.21( 30 2.373 11
3 800.524 | 2365.72( 30 7.390 18
17 4 800.524 | 2537.12( 30 3.739 19
5 800.524 | 2600.02( 30 15.075 10
6 800.524 | 2280.95( 30 3.439 19
7 800.524 | 2217.76( 30 8.430 19
8 800.524 | 2160.65( 30 3.285 19
1 1085.520| 3049.40( 23 19.680 0
2 1085.520| 2973.01( 18 3.720 0
3 1085.520| 3207.35( 26 30.103 0
18 4 1085.520| 2985.34( 22 5.410 0
5 1085.520| 3181.62( 25 13.316 0
6 1085.520| 3272.90( 23 3.994 0
7 1085.520| 2970.62( 19 15.479 0
8 1085.520| 2905.65( 20 4.976 0
19 1 1085.520| 4026.65( 30 7.007 1
2 1085.520| 3777.830 27 2.774 0
3 1085.520| 3921.510 30 7.001 | 1
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4 1085.520| 3609.90( 29 4.639 0
5 1085.520| 3812.42( 30 5.388 1
6 1085.520| 3575.04( 30 2.657 4
7 1085.520| 3824.77( 30 5.924 3
8 1085.520| 3737.37( 30 2.751 4
1 1067.650| 3060.29( 23 9.471 0
2 1067.650| 2732.91( 23 1.792 0
3 1067.650| 3348.74( 28 6.268 0
20 4 1067.650| 3047.68( 25 2.649 0
5 1067.650| 3022.75( 22 5.325 0
6 1067.650| 2831.40( 23 1.353 0
7 1067.650| 3098.70( 25 5.910 0
8 1067.650| 2662.99( 22 1.459 0
1 1067.650| 3128.74( 30 9.231 9
2 1067.650| 3353.55( 30 1.348 8
3 1067.650| 3450.76( 30 6.326 7
21 4 1067.650| 3285.26( 30 2.582 7
5 1067.650| 3386.31( 30 5.417 7
6 1067.650| 3287.07( 30 1.194 9
7 1067.650| 3428.97( 30 5.396 6
8 1067.650| 3385.63( 30 1.466 6
1 1377.820| 4523.01( 30 4.112 23
2 1377.820| 4624.70( 30 0.917 24
3 1377.820| 4154.66( 30 3.878 39
29 4 1377.820| 4267.13( 30 1.143 37
5 1377.820| 4548.13( 30 3.360 32
6 1377.820| 4728.46( 30 1.439 10
7 1377.820| 4568.10( 30 6.360 24
8 1377.820| 4528.85( 30 1.384 22
1 680.152 | 3537.66( 30 1.843 15
2 680.152 | 3754.80( 30 0.814 9
3 680.152 | 3788.04C 30 1.344 9
23 4 680.152 | 3614.36( 30 0.853 16
5 680.152 | 3604.43( 30 1.423 12
6 680.152 | 3641.76( 30 0.900 14
7 680.152 | 3459.53( 30 132.656 18
8 680.152 | 3690.06( 30 0.791 14
1 1297.970| 2854.61( 28 16.724 0
2 1297.970| 2842.98( 27 1.964 0
3 1297.970| 2896.05( 30 28.884 3
24 4 1297.970| 2960.21( 30 2.673 0
5 1297.970| 2939.76( 30 20.327 3
6 1297.970| 2875.42( 30 1.960 3
7 1297.970| 3060.34( 29 29.347 0
8 1297.970| 2828.84( 30 3.830 3
25 1 1297.970| 3167.00( 30 17.179 2
2 1297.970| 3051.52( 30 2.079 11
3 1297.970| 3033.59( 30 28.988 12
4 1297.970| 3082.850 30 3.845 2
5 1297.970| 3084.740 30 20.299 | 11
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6 1297.970( 2884.95( 30 1.956 12
7 1297.970( 3105.17( 30 29.271 11
8 1297.970| 3106.50( 30 3.789 3
1 1220.950( 2134.21( 23 96.893 0
2 1220.950| 2193.18( 22 133.130 0
3 1220.950| 2193.18( 22 130.224 0
26 4 1220.950| 2355.91( 25 12.280 0
5 1220.950( 2739.79( 27 62.590 0
6 1220.950( 2473.87( 25 9.174 0
7 1220.950( 2226.52( 22 99.228 0
8 1220.950| 2598.65( 29 11.805 0
1 1220.950| 3136.89( 30 35.945 6
2 1220.950| 3342.57( 30 1.105 6
3 1220.950| 3052.60( 30 48.368 3
27 4 1220.950| 3038.17( 28 3.620 0
5 1220.950( 3105.16( 30 22.294 8
6 1220.950( 2987.35( 30 2.838 7
7 1220.950( 3006.17( 30 33.576 8
8 1220.950| 2992.03( 29 3.522 6
1 3159.230( 3925.67( 30 79.156 21
2 3159.230( 4900.93( 30 3.232 22
3 3159.230( 3932.88( 30 67.332 20
o8 4 3159.230| 4103.12( 30 7.770 22
5 3159.230| 4167.33( 30 21.266 21
6 3159.230| 4028.29( 30 1.686 21
7 3159.230| 4253.63( 30 18.631 17
8 3159.230( 4047.09( 30 3.314 17
1 802.619 | 4176.09d 27 17.404 0
2 802.619 | 4133.42( 30 2.730 0
3 802.619 | 4183.21d 30 13.265 3
29 4 802.619 | 4205.75( 30 3.296 0
5 802.619 | 4236.64d 30 3.441 2
6 802.619 | 4236.64d 30 1.899 0
7 802.619 | 4262.760 30 13.048 2
8 802.619 | 4115.77( 30 4.827 3
1 410.932 | 4763.650 30 3.761 27
2 410.932 | 4601.22d 30 1.454 22
3 410.932 | 4963.99( 30 4.284 0
30 4 410.932 | 4702.63C 30 2.379 35
5 410.932 | 4914.05C 30 3.669 14
6 410.932 | 4903.35C 30 1.379 14
7 410.932 | 4844.160 30 4.550 9
8 410.932 | 4723.93( 30 2.195 22
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Appendix 3 — Time Windows for Problem Set 20

Table 3. Time Windows for Problem Set 20

) . Picku Deliver Picku Deliver Service | Drop | Available
Pickup | Delivery Min Tir%e Min Tini/e MaxTiEwe MaxTinswle Time Tim[()a Time
visitl visit2 0 0 336 464 10 10 0
visit3 visit4 0 0 350 433 10 10 0
visits visit6 0 0 344 417 10 10 0
visit7 visit8 0 0 321 415 10 10 0
visit9 visit10 0 0 303 427 10 10 0
visitll visit12 0 0 301 469 10 10 0
visit13 visit14 0 0 341 435 10 10 0
visitl5 visit16 0 0 328 426 10 10 0
visitl7 visit18 0 0 314 402 10 10 0
visit19 visit20 0 0 311 415 10 10 0
visit21 visit22 0 0 269 465 10 10 0
visit23 visit24 0 0 245 408 10 10 0
visit25 visit26 0 0 273 457 10 10 0
visit27 visit28 0 0 200 400 10 10 0
visit29 visit30 0 0 267 453 10 10 0
visit31 visit32 0 0 260 324 10 10 0
visit33 visit34 0 0 231 232 10 10 0
Visit35 Visit36 0 0 208 357 10 10 0
Visit37 visit38 0 0 215 245 10 10 0
Visit39 visit40 0 0 198 347 10 10 0
visit41 visit42 0 0 235 299 10 10 0
visit43 visit44 0 0 192 304 10 10 0
visit45 visit46 0 0 191 288 10 10 0
visit47 visit48 0 0 271 211 10 10 0
visit49 visit50 0 0 276 349 10 10 0
visits51 visit52 0 0 244 290 10 10 0
visit53 visit54 0 0 215 392 10 10 0
Visits5 visit56 0 0 247 293 10 10 0
visit57 visit58 0 0 280 299 10 10 0
visit59 Visit60 0 0 276 323 10 10 0
visit61 visit62 0 0 272 275 10 10 0
Visit63 visit64 0 0 273 281 10 10 0
Visit65 Visit66 0 0 254 359 10 10 0
Visit67 Visit68 0 0 255 284 10 10 0
Visit69 visit70 0 0 201 321 10 10 0
visit71 visit72 0 0 258 302 10 10 0
Visit73 visit74 0 0 193 286 10 10 0
Visit75 Visit76 0 0 263 316 10 10 0
Visit77 Visit78 0 0 280 364 10 10 0
Visit79 visit80 0 0 218 239 10 10 0
visit81 visit82 0 0 260 216 10 10 0
visit83 visit84 5 25 55 379 10 10 5
Visit85 Visit86 13 33 69 420 10 10 10
visit87 visit88 14 29 115 409 10 10 10
Visit89 visit90 20 23 165 219 10 10 15
Visit91 Visit92 19 20 102 169 10 10 19
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Vvisit93 visit94 31 50 178 425 10 10 30
Visit95 Visit96 35 36 166 266 10 10 30
Visit97 visit98 36 a7 152 209 10 10 34
visit99 | visit100 35 40 141 190 10 1Q 35
visitl01 | visit102 41 58 207 269 10 14 36
visitl03 | visit104 48 60 165 328 10 14 44
visit105 | visit106 54 73 174 186 10 10 49
visitl07 | visit108 56 62 235 89 10 1Q 52
visitl09 | visit110 57 71 126 198 10 14 54
visitlll | visit112 62 75 126 406 10 14 57
visitl13 | visitl14 59 59 144 211 10 14 57
visitl15 | visitl16 62 72 194 199 10 14 58
visitll7 | visit118 63 66 210 310 10 14 59
visit119 | visit120 65 77 158 316 10 10 64
visitl21 | visitl22 67 67 193 281 10 14 67
visitl23 | visitl24 69 79 185 267 10 14 69
Vvisitl25 | visit126 76 86 142 432 10 14 71
Vvisitl27 | visit128 76 92 193 270 10 14 72
visitl29 | visit130 77 80 173 355 10 14 75
visitl31 | visitl32 76 89 166 421 10 14 76
visit1l33 | visit134 83 84 231 392 10 10 8l
visitl35 | visit136 87 97 220 297 10 14 84
visit137 | visit138 96 106 247 238 10 1( 96
visitl39 | visit140 103 110 208 420 10 1( 100
visitl41l | visitl42 104 105 239 256 10 1( 104
visitl43 | visitl44 105 112 166 378 10 14 105
visitl45 | visit146 106 116 199 279 10 1( 105
visitl47 | visit148 114 130 221 443 10 14 111
visit149 | visit150 120 132 131 458 10 1( 118
visitl51 | visit152 124 126 184 249 10 14 121
Vvisitl53 | visit154 128 135 190 438 10 1( 126
Vvisitl155 | visit156 128 138 239 276 10 1( 126
visitl57 | visit158 130 147 236 470 10 14 130
Vvisit159 | visit160 131 147 267 310 10 1( 130
visitl61 | visit162 138 153 249 349 10 14 136
Visitl63 | visit164 145 156 265 364 10 1( 141
Visitl65 | visit166 145 153 245 345 10 14 142
Visitl67 | visit168 144 150 192 250 10 14 142
visit169 | visitl70 150 170 312 272 10 14 145
visitl71| visitl72 150 156 276 346 10 14 145
Visitl73 | visitl74 149 163 298 317 10 1( 147
visitl75| visitl76 153 160 200 427 10 14 149
Visitl77 | visitl78 151 171 266 396 10 1( 150
visitl79 | visit180 151 157 258 334 10 14 150
visit181 | visit182 153 160 314 395 10 14 152
visit183 | visit184 156 162 198 238 10 14 154
visit185 | visit186 161 162 267 388 10 14 157
visitl87 | visit188 159 176 296 470 10 14 159
visit189 | visit190 163 181 237 284 10 14 161
visit191 | visit192 167 168 319 344 10 14 164
visit193 | visit194 169 176 209 271 10 14 164
visit195 | visit196 175 191 286 444 10 14 170
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Visitl97 | visit198 170 175 327 390 10 1( 170
visit199 | visit200 177 193 249 310 10 1( 177
visit201 | visit202 181 185 347 400 10 1( 177
visit203 | visit204 178 187 195 312 10 1( 178
Vvisit205 | visit206 183 190 267 433 10 1( 180
visit207 | visit208 185 203 335 315 10 1( 180
visit209 | visit210 183 183 321 397 10 1( 183
visit211 | visit212 188 195 288 385 10 1( 187
visit213 | visit214 196 210 260 338 10 1( 191
visit215 | visit216 199 200 348 412 10 1( 195
Vvisit217 | visit218 203 223 287 359 10 1( 199
visit219 | visit220 199 201 368 409 10 1( 199

Table 4. Validation of the model based on probletmsimber 20, trial 6

Vehiclel Total cost = 148.569 Fixed cost = 0 Cost coefficients = Dist@tic

Route: depot-> visit57 -  visit33 > visit34 > visit65 > visit55 > visit58 > visit66 > visit56 >
depot

Time: depot [0], delay [0]> travel [23.0217], wait [0]> visit57 [23.0217], delay [10P> travel
[13.8924], wait [0]> visit33 [46.9142], delay [10P> travel [14.8661], wait [0}> visit34 [71.7802],
delay [10]-> travel [41.7732], wait [0P> visit65 [123.553], delay [10 travel [4.47214], wait [0P>

visit55 [138.026], delay [10P> travel [1], wait [0]> visit58 [149.026], delay [10P travel [11.1803],
wait [0] - visit66 [170.206], delay [10P travel [1], wait [0]> visit56 [181.206], delay [10P travel
[37.3631], wait [0]> depot [228.569]

Transit Sum[228.569]

Distance: depot [0] delay [0]> travel [23.0217], wait [0]> visit57 [23.0217], delay [0P> travel
[13.8924], wait [0]-> visit33 [36.9142], delay [0 travel [14.8661], wait [0]> visit34 [51.7802],
delay [0] > travel [41.7732], wait [O> visit65 [93.5534], delay [0 travel [4.47214], wait [0>
visits5 [98.0256], delay [0P> travel [1], wait [0] > visit58 [99.0256], delay [0p> travel [11.1803],
wait [0] > visit66 [110.206], delay [0 travel [1], wait [0] > visit56 [111.206] delay [OP> travel
[37.3631], wait [0]> depot [148.569]

Transit Sum 148.569

Vehicle2 Total cost = 192.05 Fixed cost = 0 Cost coefficients =abis [1]

Route: depot-> visit39 - visitl > visit2 - visit71 > visit81 > visitl19 > visit73 > visit74 >
Visits3 > visit82 > visit120 - visit205 > visit199 > visit200 > visit54 > visit72 > visit40 >
Visit206 > depot

Time: depot [0], delay [0]> travel [18.6011], wait [O]> visit39 [18.6011], delay [10}> travel
[6.40312], wait [0]> visitl [35.0042], delay [10P> travel [18.6815], wait [0P> visit2 [63.6857], delay
[10] = travel [1], wait [0]> visit71 [74.6857], delay [10P> travel [9], wait [0] > visit81 [93.6857],
delay [10]-> travel [19.4165], wait [OP> visit119 [123.102], delay [10P travel [12.3693], wait [OP>

Visit73 [145.472..145.472], delay [16} travel [2], wait [0..1e-010P visit74 [157.472..157.472], delgy
[10] - travel [1.41421], wait [0..1e-016p visit 53 [168.886], delay [10P travel [11.4018], wait [OP>

visit82 [190.288], delay [10P> travel [3.60555], wait [0}> visit120 [203.893], delay [10P travel
[5.38516], wait [0]>Visit205 [219.278], delay [10P> travel [8.06226], wait [0}> visit199 [237.34],
delay [10]>travel [2.23607], wait [0> visit200 [249.577], delay [10P travel [10.0499], wait [0P>

visitb4 [269.626], delay [10p> travel [10.4403], wait [0]> visit72 [290.067], delay [10p> travel
[29.5296], wait [0]-> visit40 [329.596], delay [10P> travel [13.4536], wait [0> visit206 [353.05],
delay [10]-> travel [9], wait [0]-> depot [372.05]

Transit Sum[372.05]

Distance..depot.[O].delay [0]> travel [18.6011], wait [0]> visit39 [18.6011], delay [0P> travel
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[6.40312], wait [0]> visitl [25.0042], delay [0P> travel [18.6815], wait [0}> visit2 [43.6857], delay
[0] > travel [1], wait [0] > visit71 [44.6857], delay [0P> travel [9], wait [0] > visit81 [53.6857],
delay [0] = travel [19.4165], wait [0P> visit119 [73.1022], delay [0P travel [12.3693], wait [0}>

visit73 [85.4715], delay [0P> travel [2], wait [0] > visit74 [87.4715], delay [0P> travel [1.41421],
wait [0] - visit53 [88.8858], delay [0P travel [11.4018], wait [O}> visit82 [100.288], delay [0P

travel [3.60555], wait [0]> visit120 [103.893], delay [0}> travel [5.38516], wait [0]> visit205
[109.278], delay [O]> travel [8.06226], wait [0}> visit199 [117.34], delay [0 travel [2. 23607],
wait [0] = visit200 [119.577], delay [OP travel [10.0499], wait [OP> visit54 [129.626], delay [OP

travel [10.4403], wait [0]> visit72 [140.067], delay [O}> travel [29.5296], wait [0]> visit40

[169.596], delay [0> travel [13.4536], wait [OP> visit206 [183.05], delay [0P travel [9], wait[0] >

depot [192.05]

Transit Sum[192.05]

Vehicle3 Total cost = 130.477 Fixed cost = 0 Cost coefficients: Dist@hlc

Route: depot—> visit63 > visit69 > visit70 > visit79 > visit6l > visit49 > visit50 > visit64 >
Visit62 = visit185-> visit193 > visit194 > visit80 - visit186-> depot

Time: depot [0], delay [0]> travel [27.5862], wait [0]> visit63 [27.5862], delay [10}> travel
[1.41421], wait [0]-> visit69 [39.0004], delay [10}> travel [9.05539], wait [0]> visit70 [58.0558],
delay [10]-> travel [1.41421], wait [0}> visit79 [69.47], delay [10P> travel [9.21954], wait [0O>

visitb1l [88.6896], delay [10p> travel [5.83095], wait [0]> visit49 [104.521], delay [10p> travel
[10.8167], wait [0]-> visit50 [125.337], delay [10P> travel [5.09902], wait [0]> visit64 [140.436],
delay [10]-> travel [4], wait [0]> visit62 [154.436], delay [10P travel [5.65685], wait [0P> visit185
[170.093], delay [10> travel [5], wait [0]> visit193 [185.093], delay [10P> travel [2], wait [0]>

visit194 [197.093], delay [10P travel [7], wait [0]> visit80 [214.093], delay [10p travel [13.0384],
wait [0] - visit186 [237.131], delay [10P travel [23.3452], wait [0 depot [270.477]

Transit Sum[270.477]

Distance: depot [0], delay [0]> travel [27.5862], wait [0]> visit63 [27.5862], delay [OP> travel
[1.41421], wait [0]> visit69 [29.0004], delay [0 travel [9.05539], wait [O}> visit70 [38.0558],
delay [0] > travel [1.41421], wait [0]> visit79 [39.47], delay [0]> travel [9.21954], wait [0]>
visit61l [48.6896], delay [0]> travel [5.83095], wait [0]> visit49 [54.5205], delay [0}> travel
[10.8167], wait [0]—> visit50 [65.3372] delay [0P> travel [5.09902], wait [0]> visit64 [70.4362],
delay [0] > travel [4], wait [0]> visit62 [74.4362], delay [0 travel [5.65685], wait [0> visit185
[80.0931], del ay [0]> travel [5], wait [0] > visit193 [85.0931], delay [0P> travel [2], wait [0] >
visit194 [87.0931] delay [0P travel [7], wait [0]—> visit80 [94.0931], delay [0P> travel [13.0384],

wait [0] - vi sit186 [107.131], delay [0P travel [23.3452], wait [O}> depot [130.477]

Transit um[130.477]

Vehicled Total cost = 88.3736 Fixed cost = 0 Cost coefficients: DistHtjce

Route: depot-> visitl3 - visitl9 > visit9 > visit23 > visitl7 - visitl5 > visitl4 -> visit18 >
Visit20 - visitl6 - visit10 - visit24-> depot

Time: depot [0], delay [0]> travel [22.0227], wait [0]> visitl3 [22.0227], delay [10}> travel
[3.16228], wait [0]> visit19 [35.185], delay [10%> travel [3.16228], wait [0P> visit9 [48.3473], delay
[10] = travel [4.24264], wait [0 visit23 [62.5899], delay [10P travel [2.23607], wait [0P> visitl7

[74.826], delay [10P> travel [6], wait [0]> visit15 [90.826], delay [10P> travel [1.41421], wait [0P>

visitl4 [102.24], delay[10]> travel [2.23607], wait [0]> visit18 [114.476], delay [10P> travel
[4.24264], wait [0]-> visit20 [128.719], delay [10}> travel [2.82843], wait [0> visitl6 [141.547],
delay [10]> travel [3.16228], wait [0P> visit10 [154.71], delay [10P> travel [10.8167], wait [0}>

visit24 [175.526], delay [10P travel [22.8473], wait [0}> depot [208.374]

Transit Sum[208.374]

Distance: depot [0], delay [0P> travel [22.0227], wait [OP> visit13 [22.0227], delay [0P[4.24264],
wait [0] = visit20 [48.7189], delay [0 travel [2.82843], wait [0}> visit16 [51.5473], delay[0P>
travel [3.16228], wait [0]> visitl0 [54.7096], delay [O}> travel [10.8167], wait [0]> visit24
[65.5263], delay [0P> travel [22.8473], wait [0}> depot [88.3736]
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Transit Sum [88.3736]

Vehicleb Total cost = 208.919 Fixed cost = 0 Cost coefficients: Dist@hlc

Route: depot-> visit29 - visit30 > visit41l > visit35 > visit7 > visit36 > visit67 > visit68 >
visit31 =2 visit43 > visit42 - visitd4—> visits =2 visit32 - visit215 > visit216 > visité > visit8 >
depot

Time: depot [0], delay [0P> travel [7.07107], wait [O}> visit29 [7.07107], delay [10P> travel [1],
wait [0] = visit30 [18.0711], delay [10P travel [4], wait [0]> visit41 [32.0711], delay [10P> travel
[10], wait [0] - visit35 [52.0711], delay [10> travel [23], wait [0]> visit7 [85.0711], delay [10P>

travel [2], wait[0] = visit36 [97.0711], delay [10P> travel [16.9706], wait [0}> visit67 [124.042],
delay [10]-> travel [8], wait [0]> visit68 [142.042], delay [10P travel [4.24264], wait [OP> visit31
[156.284], delay [10}> travel [19.105], wait [0]> visit43 [185.389], delay [10> travel [6.40312],
wait [0] = visit42 [201.792], delay [10P travel [12.1655], wait [0> visit44 [223.958], delay [10P

travel [12.0416], wait [OP> visit5 [245.999], delay [10P> travel [10], wait [0] -> visit32 [265.999],
delay [10]-> travel [18.1108], wait[Op> visit215 [294.11], delay [10P> travel [3.16228], wait [0}>
visit216 [307.273], delay [10p> travel[9.84886], wait [0]> visit6é [327.121], delay [10}> travel
[18.0278], wait [0]> visit8 [355.149], delay [10> travel [23.7697], wait [0P> depot [388.919]

Transit Sum[388.919]

Distance: depot [0], delay [OP> travel [7.07107], wait [0 visit29 [7.07107], delay [0 travel [1],
wait [0] - visit30 [8.07107], delay [0P> travel [4], wait [0] > visit41l [12.0711], delay [0P> travel
[10], wait [0] - visit35 [22.0711] delay [0}> travel [23], wait [0]> visit7 [45.0711], delay [0P>

travel [2], wait [0] > visit36 [47.0711], delay [0P> travel [16.9706], wait [O}>> visit67 [64.0416],
delay [0] > travel [8], wait [0] > visit68 [72.0416], delay [0p> travel [4.24264], wait [0 visit31
[76.2843], delay [0]> travel [19.105], wait [0P> visit43 [95.3892], delay [OP travel [6.40312], walit
[0] = visit42 [101.792] delay [0 travel [12.1655], wait [0P> visit44 [113. 958], delay [0P travel
[12.0416], wait [0]> visit5 [125.999], delay [0P> travel [10], wait [0]> visit32 [135.999], delay [0
- travel [18.1108], wait [0P> visit215 [154.11], delay [0P> travel [3.16228], wait [0]> visit216
[157.273], delay [0] -> travel [9.84886], wait [6} visit6 [167.121], delay [0 travel [18.0278], wait
[0] = visit8 [185.149] delay [0P travel [23.7697], wait [O> depot

[208.919]

Transit Sum[208.919]

Vehicleb Total cost = 108.338 Fixed cost = 0 Cost coefficients:abDist [1]

Route: depot-> visit83 > visit89 - visit99 > visit85 > visit109-> visitl11-> visitl10-> visitl01->
Visit100-> visit102 > visit93 > visit86 > visit94 > visit90 > visit84 > visit112-> depot

Time: depot [0], delay [0]> travel [7.61577], wait [O]> visit83 [7.61577], delay [10}> travel
[6.08276], wait [0]> visit89 [23.6985], delay [10P travel [9], wait [0]> visit99 [42.6985], delay [10
-> travel [6], wait [0]> visit85 [58.6985], delay [10P travel [5.83095], wait [0 visit109 [74.5295],
delay [10]>> travel [5.09902], wait [0P> visit111 [89.6285], delay [10P travel [4.12311], wait [O]
- visit110 [103.752], delay [10P travel [3.16228], wait [0P> visit101 [116.914], delay [10P travel
[7], wait [0] = visit100 [133.914], delay [10P travel [4], wait [0]> visit102 [147.914], delay [10P

travel [2], wait [0]> visit93 [159.914], delay [10P travel [4], wait [0]> visit86 [173.914], delay [10
-> travel [0], wait [0] > visit94 [183.914], delay [10P travel [17.72], wait [0]> visit90 [211.634],
delay [10]> travel [2.23607], wait [0] -> visit84 [223.87], delay [18} travel [6.08276], wait [0]>

visit112 [239.953], delay [10P travel [18.3848], wait [0}> depot [268.338]

Transit Sum[268.338]

Distance: depot [0], delay [0]> travel [7.61577], wait [0}> visit83 [7.61577], delay [0}> travel
[6.08276], wait [0]> visit89 [13.6985] delay [0P travel [9], wait [0]> visit99 [22.6985], delay [OP
travel [6], wait [0] > visit85 [28.6985], delay [0P> travel [5.83095], wait [0}> visit109 [34.5295],
delay [0] = travel [5.09902], wait [0P> visit111 [39.6285], delay [0P travel [4.12311], wait [0}>
visit110 [43.7516], delay [0P travel [3.16228], wait [0P> visit101 [46.9139], delay [0P travel [7],
wait[0] - visit100 [53.9139], delay [0P travel [4], wait [0]> visit102 [57.9139], delay [0P travel
[2], wait [0] = visit93 [59.9139], delay [0 travel [4], wait [0] > visit86 [63.9139], delay [0
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travel [0], wait [0] > visit94 [63.9139] delay [0 travel [17.72], wait [0]> visit90 [81.6339] delay
[0] > travel [2.23607], wait [0}> visit84 [83.87], delay [O> travel [6.08276], wait [0] -> visit112
[89.9528] delay [0}> travel [18.3848], wait [0P> depot [108.338]

Transit Sum[108.338]

Vehicle7 Total cost = 93.8076 Fixed cost = 0 Cost coefficients: DistHtjce

Route: depot—> visit91 - visitll > visit21 > visit25 > visit26 - visitl2 - visit22 - visit131 >
Visit92 - visit179-> visit180-> visit132-> depot

Time: depot [0], delay [0]> travel [19.9249], wait [0]> visit91 [19.9249], delay [10}> travel
[11.4018], wait [0]-> visitll [41.3266], delay [10P> travel [1.41421], wait [0P> visit21 [52.7408],
delay [10]-> travel [2.23607], wait [0P> visit25 [64.9769], delay [10P travel [1], wait [0]> visit26
[75.9769], delay [10P> travel [9.05539], wait [0P> visit12 [95.0323], delay [10P> travel [4.47214],
wait [0] = visit22 [109.504], delay [10p> travel [6.40312], wait [OP> visit131 [125.908], delay [10
- travel [12.8062], wait [O]> visit92 [148.714], delay [10p> travel [8.544], wait [0]> visit179
[167.258], delay [10}> travel [4], wait [0]> visit180 [181.258], delay [10P travel [3.60555], wait
[0] = visit132 [194.863], delay [10P travel [8.94427], wait [0P> depot [213.808]

Transit Sum[213.808]

Distance: depot [0], delay [0]> travel [19.9249], wait [0}> visit91 [19.9249], delay [0}> travel
[11.4018], wait [0]-> visitll [31.3266], delay [0 travel [1.41421], wait [0]> visit21 [32.7408],
delay [0] > travel [2.23607], wait [OP> visit25 [34.9769], delay [OP> travel [1], wait [0] > visit26
[35.9769], delay [0]> travel [9.05539], wait [0P> visit12 [45.0323], delay [0 travel [4.47214], wait
[0] - visit22 [49.5044], delay [0P> travel [6.40312], wait [OP> visit131 [55.9075], delay [OP travel
[12.8062], wait [0]> visit92 [68.7138], delay [© travel [8.544], wait [0O> visit179

[77.2578], de lay [0P> travel [4], wait [0]> visit180 [81.2578], delay [OP travel [3.60555], wait [O]
-> visit132 [84.8633] delay [6) travel [8.94427], wait [0> depot [93.8076]

Transit Sum 93.8076

Vehicle8 Total cost = 167.074 Fixed cost = 0 Cost coefficients: Dist@hlc

Route: depot-> visit103 > visit95 = visit127 - visitl15-> visitl16 > visit167 - visit96 - visit104
- Visit168-> visit128-> depot

Time: depot [0], delay [0> travel [12.083], wait [0}> visit103 [48], delay [10P> travel [4.12311],
wait [0] - visit95 [62.1231], delay [10P> travel [26.9258], wait [OP> visit127 [99.0489], delay [10]
- travel [18.7883], wait [0]> visitl15 [127.837], delay [10P> travel [5], wait [0] > visit116
[142.837], delay [10> travel[16.5529], wait [0}> visitl67 [169.39], delay [10P> travel [16.9706],
wait [0] - visit96 [196.361], delay [10P> travel [2.23607], wait [OP> visit104 [208.597], delay [10]
- travel [16.7631], wait [0P> visit168 [235.36], delay [10P> travel [22.1359], wait [0> visit128
[267.496], delay [10P> travel [25.4951], wait [0O}> depot [302.991]

Transit Sum 302.991

Distance: depot [0], delay [0]> travel [12.083], wait [0]> visit103 [12.083] delay [0}> travel
[4.12311], wait [0]-> visit95 [16.2062], delay [0 travel [26.9258], wait [0]> visit127 [43.132],
delay [0] > travel [18.7883], wait [O}> visit115 [61.9203], delay [0 travel [5], wait [0]> visit116
[66.9203], delay [0}> travel [16.5529], wait [OP> visit167 [83.4732], delay [0 travel [16.9706],
wait [0] - visit96 [100.444], delay [0P travel [2.23607], wait [O}> visit104 [102.68], delay [0P

travel [16.7631], wait [0]> visit168 [119.443] delay [0P> travel [22.1359], wait [0]> visit128
[141.579] delay [0}> travel [25.4951], wait [0} depot [167.074]

Transit UM [167.074]

Vehicle9 Total cost = 202.768 Fixed cost = 0 Cost coefficients: Distghlc

Route: depot—> visitl07 - visit1l08 - visitl71 > visitl73 > visitl75 - visitl72 > visit219 >
Visitl77 > visitl87 > visit1l88 > visitl74> visitl76 > visit3 > visit220 > visitl78 > visit4 >
depot
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99 Neighborhood structures definition

Time: depot [0], delay [OP> travel [20.6155], wait [0P> visit107 [56], delay [10P> travel [4.47214],
wait [0] - visit108 [70.4721], delay [10P travel [12.53], wait [56.9979P visitl71 [150], delay [10]
-> travel [3], wait [0]> visitl73 [163], delay [10P> travel [5.65685], wait [0P> visit175 [178.657],
delay [10]-> travel [2.23607], wait [OP> visit172 [190.893], delay [10P travel [10.4403], wait [OP>

visit219 [211.333], delay [10P travel[25.0799], wait [O]> visitl77 [246.413], delay [10P travel
[4.47214], wait [0]-> visit187 [260.885], del ay [10P travel [3.60555], wait [0P> visit188 [274.491],
delay [10]-> travel [14.8661], wait [0P> visit174 [299. 357], delay [10P travel [12.083], wait [OP>

Visitl76 [321.44], delay [10p> travel [5.38516], wait [0]> visit3 [336.825], delay [10}> travel
[21.2132], wait [0]-> visit220 [368.038], delay [10P travel [6.08276], wait [0}> visit178 [384.121],
delay [10] > travel [17.0294], wait [O> visit4 [411.15], delay [10P> travel [34], wait [0]> depot
[455.15]

Transit Sum 455.15

Distance: depot [0] delay [0]> travel [20.6155], wait [0}> visitl07 [20.6155], delay [0P travel
[4.47214], wait [0]-> visit108 [25.0877], delay [0P travel [12.53], wait [0]> visitl71 [37.6176],
delay [0] > travel [3], wait [0]-> visit173 [40.6176], delay [OP travel [5.65685], wait [OP> visit175
[46.2745], delay [0}> travel [2.23607], wait [Op> visit172 [48.5106], delay [0 travel [10.4403],
wait [0] - visit219 [58.9509], delay [0P travel [25.0799], wait [0}> visit177 [84.0307], delay[0P>

travel [4.47214], wait [0]> visit187 [88.5029], delay [0}> travel [3.60555], wait [0]> visit188
[92.1084] delay [OP> travel [14.8661], wait [OP> visit174 [106.974], delay [0P travel [12.083], walit
[0] > visitl76 [119.058], delay [0P travel [5.38516], wait [0P> visit3 [124.443], delay [0P travel
[21.2132], wait [0]> visit220 [145.656], delay [OP travel [6.08276],

wait [0] - visitl78 [151.739], delay [0P> travel [17.0294], wait [O]> visit4 [168.768], delay [0P>
travel [34], wait [0]> depot [202.768]

Transit Sum 202.768

VehiclelO Total cost = 21.6734 Fixed cost = 0 Cost coefficientstddice [1]

Route: depot-> visit97 - visit98 > depot

Time: depot [0], delay [0> travel [6], wait [30]-> visit97 [36], delay [10]> travel [8.60233], wait [O]
-> visito8 [54.6023], delay [10P travel [7.07107], wait [0> depot [71.6734]

Transit Uum 71.6734

Distance: depot [0] delay [OP> travel [6], wait [0]-> visit97 [6], delay [0]> travel [8.60233], wait [O]
-> visit98 [14.6023], delay [0 travel [7.07107], wait [0> depot [21.6734], delay [0P travel [0],
wait [0]

Transit um[21.6734]

Vehiclell Total cost = 140.275 Fixed cost = 0 Cost coefficients:aDis [1]

Route: depot-> visit1l17 > visit4b > visit27 - visit1l45-> visitl43-> visit1l41-> visitl44-> visit118
- Visit1l46-> visit142-> visit46 > visit28 > depot

Time: depot [0], delay [0..47.1886p travel [15.8114], wait [0}> visitl17 [63], delay [10}> travel
[12.2066], wait [0]-> visit45 [85.2066], delay [10}> travel [22.1359], wait [0> visit27 [117.342],
delay [10]-> travel [14.3178], wait [OP> visit145 [141.66], delay [10P travel [9], wait [0]-> visit143
[160.66], delay [10p> travel [4.12311], wait [0P> visit1l41 [174.783], delay [10P travel [6.08276],
wait [0] - visit144 [190.866], delay [10P travel [5.09902], wait [0P> visit118 [205.965], delay [10
- travel [1], wait [0] > visit1l46 [216.965], delay [10> travel [1], wait [0] > visit1l42 [227.965],
delay [10] -> travel [18.2483], wait [0P visit46 [256.213], delay [10P> travel [12.6491], wait [0OP>

Vvisit28 [278.863], delay [10P travel [18.6011], wait [0}> depot [307.464]

Transit Sum[307.464]

Distance: depot [0], delay [0]> travel [15.8114], wait [0}> visit117 [15.8114], delay [0P> travel
[12.2066], wait [0]-> visit45 [28.0179], delay [0 travel [22.1359], wait [0]> visit27 [50.1539],
delay [0] > travel [14.3178], wait [0P> visit145 [64.4717], delay [0P travel [9], wait [0]> visit143
[73.4717], delay [O}> travel [4.12311], wait [OP> visit141 [77.5948], delay [0 travel [6.08276],
wait [0] = visit144 [83.6776], delay [Op travel [5.09902], wait [0}> visit118 [88.7766], delay [OP

travel [1], wait [0] > visit146 [89.7766], delay [0P travel [1], wait [0]-> visit142 [90.7766] delay[O
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10C Neighborhood structures definition

- travel [18.2483], wait [0]> visit46 [109.025], delay [0P> travel [12.6491], wait [0]> visit28
[121.674], delay [0P> travel [18.6011], wait [0P> depot [140.275]

Transit Sum[140.275]

Vehiclel2 Total cost = 122.024 Fixed cost = 0 Cost coefficients:aDist [1]

Route: depot—> visit105 > visit87 - visit129 > visit37 - visit113 > visit114 > visit106 > visit88
- visit130-> visit38 > depot

Time: depot [0], delay [0P> travel [26.2488], wait [0] -> visit105 [54], delay [16} travel [1], wait [O]
-> Visit87 [65], delay [10}> travel [12.083], wait [0}> visit129 [87.083], delay [10P travel [1], wait
[0] = vi sit37 [98.083], delay [10p> travel [8], wait [0] > visit113 [116.083], delay [10f> travel
[10.2956], wait [0]-> visit114 [136.379], delay [10P travel [8.94427], wait [0}> visit106 [155.323],
delay [10]-> travel[9.05539], wait [O]> visit88 [174.378], delay [10P travel [21.1896], wait [0}>

visit130 [205.568] , delay [10P travel [24.2074], wait [0P> visit38 [239.775], delay [10P travel [0],
wait [0] > depot [249.775]

Transit um[249.775]

Distance: depot [0] delay [0P> travel [26.2488], wait [0P> visit105 [26.2488], delay [0p travel [1],
wait [0] > visit87 [27.2488], delay [0p> travel [12.083], wait [O}> visit129 [39.3319], delay [0P

travel [1], wait [0] > visit37 [40.3319], delay [0F> travel [8], wait [0]> visit113 [48.3319], delay [0
- travel [10.2956], wait [0> visit114 [58.6275], delay [0P> travel [8.94427], wait [0}> visit106
[67.5718], delay [OP> travel [9.05539], wait [0P> visit88 [76.6271] delay [® travel [21.1896], walit
[0] = visit130 [97.8168], delay [0P travel [24.2074], wait [OP> visit38 [122.024], delay [0 travel
[0], wait [0] = depot [122.024]

Transit Sum[122.024]

Vehiclel3 Total cost = 202.49 Fixed cost = 0 Cost coefficients: Distftice

Route: depot-> visitl21 - visit1l23 - visit1l22 - visit1l25 > visit135 > visit133 - visit134 >
Visit124 - visit136 > visit126 > depot

Time: depot [0], delay [0]> travel [48.8365], wait [18.1635pP visit121 [67], delay [10]> travel
[3.16228], wait [0]> visit123 [80.1623], delay [10P travel [24.1868], wait [0}> visit122 [114.349],
delay [10]-> travel [16.1555], wait [0P> visit125 [140.505], delay [10P travel [22.1359], wait [0P>

visit135 [172.64], delay [10P> travel [16.5529], wait [0}> visit133 [199.193], delay [10P travel
[10.4403], wait [0]-> visit134 [219.634], delay [10P travel [15], wait [0]> visit124 [244.634], delay
[10] = travel [13.4536], wait [0]> visit136 [268.087], delay [10P> travel [4.12311], wait [O]>

Visit126 [282.21], delay [10p travel [28.4429], wait [0> depot [320.653], delay [0P travel [0],
wait [0]

Transit Sum[320.653]

Distance: depot [0], delay [0}> travel [48.8365], wait [0}> visit121 [48.8365], delay [0p travel
[3.16228], wait [0]-> visit123 [51.9987], delay [0 travel [24.1868], wait [O> visit122 [76.1855],
delay [0] > travel [16.1555], wait [0> visit125 [92.341], delay [0P travel [22.1359], wait [O>

visitl35 [114.477], delay [O> travel [16.5529], wait [0]> visit133 [131.03], delay [0> travel
[10.4403], wait [0]> visit134 [141.47], delay [0P> travel [15], wait [0]-> visit124 [156.47], delay [0
- travel [13.4536], wait [0P> visit136 [169.924], delay [0 travel [4.12311], wait [0> visit126
[174.047] delay [0P> travel [28.4429], wait [0P> depot [202.49], delay [0P

Transit Sum [202.49]

Vehiclel4 Total cost = 90.7877 Fixed cost = 0 Cost coefficientstddice [1]

Route: depot-> visit51 > visit59 > visit52 - visit60 > depot

Time: depot [0], delay [0]> travel [36.7151], wait [O]> visit51 [36.7151], delay [10}> travel
[2.23607], wait [0]-> visit59 [48.9512], delay [10}> travel [10.8167], wait [0]> visit52 [69.7678],
delay [10]> travel [19.9249], wait [0P> visit60 [99.6927], delay [10P travel [21.095], wait [O>
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depot [130.788]

Transit Sum[130.788]

Distance: depot [0], delay [0]> travel [36.7151], wait [0]> visit51 [36.7151] delay [0}> travel
[2.23607], wait [0]-> visit59 [38.9512], delay [0 travel [10.8167], wait [0]> visit52 [49.7678],
delay [0] = travel [19.9249], wait [0P> visit60 [69.6927], delay [0 travel [21.095], wait [0]>
depot [90.7877], delay [0p travel [0], wait [O]

Transit SUum[90.7877]

Vehiclel5 Total cost = 72.7513 Fixed cost = 0 Cost coefficientstddice [1]

Route: depot-> visit1l49 - visit159 - visit155 > visitl51 - visit139 - visitl53 - visit154 >
Visit150-> visit156 > visit152-> visitl60-> visit140-> depot

Time: depot [0], delay [OP> travel [21.3776], wait [0P> visit149 [120] delay [10P> travel [7.2111],
wait [0] > visit159 [137.211], delay [10p travel [1], wait [0] > visit155 [148.211], delay [10P>
travel [0], wait [0] > visitl51 [158.211], delay [10P travel [3], wait [0]> visit139 [171.211], delay
[10] - travel [5], wait [0] > visit153 [186.211], delay [10p travel [3.60555], wait [OP> visit154
[199.817], delay [10P> travel [4.12311], wait [0P> visit150 [213.94], delay [10P> travel [2.82843],
wait [0] - visit156 [226.768], delay [10P travel [3.60555], wait [0P> visit152 [240.374], delay [10
- travel [4], wait [0] > visit160 [254.374], delay [10> travel [1], wait [0] > visit140 [265.374],
delay [10]-> travel [16], wait [0]> depot [291.374

Transit Sum[291.374]

Distance: depot [0], delay [0]> travel [21.3776], wait [0}> visit149 [21.3776], delay [0P> travel
[7.2111], wait [0]> visit159 [28.5887], delay [0P travel [1], wait [0]> visit155 [29.5887], delay [0
-> travel [0], wait [0]> visit151 [29.5887], delay [0P travel [3], wait [0]-> visit139 [32.5887], delay
[0] > travel [5], wait [0] > visit153 [37.5887], delay [0 travel [3.60555], wait [0]> visit154
[41.1942], delay [0}> travel [4.12311], wait [OP> visit150 [45.3173], delay [0 travel [2.82843],
wait [0] = visit156 [48.1457], delay [Op travel [3.60555], wait [0}> visit152 [51.7513], delay [OP

travel [4], wait [0]> visit160 [55.7513], delay [OP travel [1], wait [0]> visit140 [56.7513], delay [0
-> travel [16], wait [0]> depot [72.7513]

Transit Sum[72.7513]

Vehiclel6 Total cost = 42.4945 Fixed cost = 0 Cost coefficientstddice [1]

Route: depot-> visit147-> visit137 > visit148-> visit138 > depot

Time: depot [0], delay [0]> travel [19.0263], wait [94.9737P visit1l47 [114], delay [10}> travel
[5.65685], wait [0]> visitl37 [129.657], delay [10P travel [0], wait [0]> visit148 [139.657], delay
[10] > travel [2], wait [0] > visit138 [151.657], delay [10P> travel [15.8114], wait [0]> depot
[177.468]

Transit SUm[177.468]

Distance: depot [0], delay [0}> travel [19.0263], wait [0]> visit147 [19.0263], delay [0P travel
[5.65685], wait [0]> visit137 [24.6832], delay [0P travel [0], wait [0]> visit148 [24.6832], delay [0
-> travel [2], wait [0]-> visit138 [26.6832], delay [0P travel [15.8114], wait [0}> depot [42.4945]

Transit Jum [42.4945]

Vehiclel?7 Total cost = 48.4243 Fixed cost = 0 Cost coefficientstddice [1]

Route: depot> visit161-> visit162-> depot

Distance: depot [0], delay [0]> travel [24.0832], wait [0}> visit161 [24.0832], delay [0P> travel
[8.06226], wait [0]> visit162 [32.1454], delay [0P travel [16.2788], wait [0}> depot [48.4243]

Transit Sum[48.4243]

Vehiclel8 Total cost = 127.933 Fixed cost = 0 Cost coefficients:aDis [1]
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Route: depot-> visit163-> visit4d7 - visit164-> visit48 - visit207 - visit208 > depot

Time: depot [0], delay [OP> travel [24.3311], wait [0P> visitl63 [145], delay [10P> travel [2], wait
[0] =>> visit47 [157], delay [10]> travel [13.3417], wait [OP> visit164 [180.342], delay [10P travel
[2.23607], wait [0]-> visit48 [192.578], delay [10P travel [31.0161], wait [O> visit207 [233.594],
delay [10]-> travel [42.2019], wait [OP> visit208 [285.796], delay [10P travel [12.8062], wait [OP>

depot [308.602]

Transit Sum[308.602]

Distance: depot [0], delay [0P> travel [24.3311], wait [0 visit163 [24.3311], delay [0P travel [2],
wait [0] = visit47 [26.3311], delay [0P travel [13.3417], wait [0P> visitl64 [39.6727], delay [OP

travel [2.23607], wait [0]> visit48 [41.9088], delay [0> travel [31.0161], wait [O]> visit207
[72.9249], delay [0}> travel [42.2019], wait [OP> visit208 [115.127], delay [Op travel [12.8062],
wait [0] > depot [127.933]

Transit Sum[127.933]

Vehiclel9 Total cost = 138.792 Fixed cost = 0 Cost coefficients:aDist [1]

Route: depot-> visit165-> visitl89-> visitl69-> visitl70-> visit190-> visit166 > depot

Time: depot [0], delay [0]> travel [7.61577], wait [137.384P visitl65 [145], delay [10}> travel
[39.4081], wait [0]> visit189 [194.408], delay [10P travel [4.12311], wait [0}> visit169 [208.531],
delay [10]-> travel [11.4018], wait [OP> visit170 [229.933], delay [10P travel [34.0588], wait [OP>

visit190 [273.992], de lay [10P travel [30.4795], wait [0P> visit166 [314.471], delay [10P travel
[11.7047], wait [0]> depot [336.176], delay [0P travel [0], wait [O]

Transit UM [336.176]

Distance: depot [0], delay [0}> travel [7.61577], wait [0}> visit165 [7.61577], delay [0P> travel
[39.4081], wait [0]-> visit189 [47.0239], delay [0P> travel [4.12311], wait [0P> visit169 [51.147],
delay [0] = travel [11.4018], wait [O> visit170 [62.5488], delay [0P travel [34.0588], wait [0>
visit190 [96.6075], delay [Op> travel [30.4795], wait [0]> visitl66 [127.087], delay [0p> travel
[11.7047], wait [0]> depot [138.792]

Transit Um[138.792]

Vehicle20 Total cost = 102.149 Fixed cost = 0 Cost coefficients:aDis [1]

Route: depot-> visit183-> visit181-> visit182-> visit184-> depot

Time: depot [0], delay [0}> travel [40.3113], wait [115.689P visit183 [156], delay [10P> travel
[34.0147], wait [0]-> visit181 [200.015], delay [10P travel [13.4536], wait [0}> visit182 [223.468],
delay [10]-> travel [2], wait [0]> visit184 [235.468], delay [10P travel [12.3693], wait [O}> depot
[257.838]

Transit um[257.838]

Distance: depot [0], delay [0]> travel [40.3113], wait [O}> visit183 [40.3113] delay [0 travel
[34.0147], wait [0]-> visit181 [74.326], delay [0P> travel [13.4536], wait [0]> visit182 [87.7796],
delay [0] = travel [2], wait [0] > visit184 [89.7796], delay [0 travel [12.3693], wait [0}> depot
[102.149], delay [0P> travel [0], wait [O]

Transit Sum[102.149]

Vehicle2l Total cost = 111.046 Fixed cost = 0 Cost coefficients:aDist [1]

Route: depot—> visitl95-> visitl91-> visit201-> visitl97 > visit75-> visitl98-> visit196 >
Visit202-> visit192-> visit76 > depot
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Time: depot [0], delay [0]> travel [39.8497], wait [135.15P visit195 [175], delay [10P> travel
[3.16228], wait [0]-> visit191 [188.162], delay [10P travel [5], wait [0]> visit201 [203.162], delay
[10] > travel [7.61577], wait [O]> visitl97 [220.778], delay [10P> travel [4.12311], wait [O]>
visit75 [234.901], delay [10P travel [7.2111], wait [O}> visit198 [252.112], delay [10P travel [2],
wait [0] > visit196 [264.112], delay [10p travel [2], wait [0] = visit202 [276.112], delay [10P>
travel [4], wait [0]-> visit192 [290.112], delay [10P travel [1.41421], wait [0P>

Vvisit76 [301.526], delay [10P travel [34.6699], wait [0}> depot [346.196]

Transit Sum [ 346.196]

Distance: depot [0], delay [0}> travel [39.8497], wait [0> visit195 [39.8497], delay [0 travel
[3.16228], wait [0]> visit191 [43.012], delay [0}> travel [5], wait [0]> visit201 [48.012], delay [0
- travel [7.61577], wait [0P> visit197 [55.6278], delay [0p> travel [4.12311], wait [O> visit75
[59.7509], delay [0]> travel [7.2111], wait [OP> visit198 [66.962], delay [0P travel [2], wait [0]>
Vvisit196 [68.962], delay [Op> travel [2], wait [0] > visit202 [70.962], delay [0 travel [4], wait [O]
- Visitl92 [74.962], delay [0P> travel [1.41421], wait [0}> visit76 [76.3762], delay [0P> travel
[34.6699], wait [0]> depot [111.046]

Transit Sum[111.046]

Vehicle22 Total cost = 117.463 Fixed cost = 0 Cost coefficients:aDis [1]

Route: depot-> visit203-> visit77 > visit204-> visit78 > visit217 > visit218-> depot

Time: depot [0], delay [OP> travel [34], wait [144]> visit203 [178], delay [10}> travel [5], wait [0]
- Visit77 [193], delay [10P> travel [5], wait [0]—> visit204 [208], delay [10p> travel [9.84886], walit
[0] = visit78 [227.849], delay [10P> travel [13.6015], wait [0}> visit217 [251.45], delay [10p>
travel [18.2483], wait [0]> visit218 [279.699], delay [10p> travel [31.7648], wait [0]> depot
[321.463]

Transit um[321.463]

Distance: depot [0], delay [0P> travel [34], wait [0]> visit203 [34], delay [0..1e-010p travel [5],
wait [0] - visit77 [39], delay [0]> travel [5], wait [0]> visit204 [44], delay [0]> travel[9.84886],
wait [0] = visit78 [53.8489], delay [0 travel [13.6015], wait [0P> visit217 [67.4503], delay[0P>
travel [18.2483], wait [0]> visit218 [85.6986], delay [OP> travel [31.7648], wait [0]> depot
[117.463]

Transit SUm[117.463]

Vehicle23 Total cost = 152.724 Fixed cost = 0 Cost coefficients: Disd1]

Route: depot-> visit209 - visit213 - visitl57 - visit211 > visit210 - visit214 > visit212 >
visit158 > depot

Time: depot [0], delay [0}> travel [12.2066], wait [170.793p visit209 [183], delay [10P> travel
[8.24621], wait [0]> visit213 [201.246], delay [10P travel [12.3693], wait [0}> visitl57 [223.616],
delay [10] > travel [11.6619], wait [0P> visit211 [245.277], delay [10p travel [32.28], wait [0]>

visit210 [287.557] , delay [10P travel [16.2788], wait [0P> visit214 [313.836], delay [10p travel
[18.1108], wait [0]> visit 212 [341.947], delay [10P travel [19.2094], wait [OP> visit158 [371.156],
delay [10]-> travel [22.3607], wait[0}> depot [403.517]

Transit Sum[403.517]

Distance: depot [0], delay [0P> travel [12.2066], wait [0}> visit209 [12.2066], delay [0P travel [8.
24621], wait [0]-> visit213 [20.4528], delay [0P> travel [12.3693], wait [0}> visit157 [32.8221],
delay [0] > travel [11.6619], wait [0]> visit211 [44.484], delay [O> travel [32.28], wait [0]>

Vvisit210 [76.764], delay [O> travel [16.2788], wait [0]> visit214 [93.0428], delay [OP> travel
[18.1108], wait [0]> visit212 [111.154], delay [0p travel [19.2094], wait [OP> visit158 [130.363],
delay [0]-> travel [22.3607], wait [0> depot [152.724]

Transit Sum[152.724]
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