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ABSTRACT 
 

The General Pickup and Delivery Problem with Time Windows is a broad 
model enclosing a whole set of problems, in which a fleet of vehicles has to satisfy a set 
of transportation requests. Hence, a route is constructed for each vehicle detailing 
which requests to visit, the order of the visits, and the arrival and departure times for 
each visit (scheduling the visits). All visits are performed within specified time 
windows, with the objective of minimizing the total traveled distance by all vehicles, 
but other objectives can be found.  

 
While the General Pickup and Delivery Problem with Time Windows has many 

variants, all of which are classified as NP-hard problems; which means, there was no 
known polynomial time algorithm capable of producing an optimal solution, at least for 
large problem instances. As such, heuristic and metaheuristic methods were applied to 
gain near optimal solutions in reasonable running times. In this study, an online hybrid 
metaheuristic based on Variable Neighborhood Search, Tabu Search, and Guided Local 
Search was created and tested on one variant of the general model (i.e. the Dynamic 
Pickup and Delivery Problem with Time Windows). This study was also concerned 
with determining the effect of dynamically changing the hybrid’s search parameters, 
during the search, on solution quality and running time, and the effect of changing the 
hybrid’s neighborhood order on solution quality and running time. To achieve the aims 
of this study, the online hybrid was tested against problem instances based on the 
works of Christofides, Fisher, and Taillard (a total of 30 data sets). It should be noted 
that these sets are modified to include time windows to fit this study. Furthermore, the 
online hybrid was assessed based on the competitive analysis concept, but not in the 
exact sense due to the nature of the selected problem (i.e. NP-hard problem).  

 
It was found that, for large problem instances, the dynamic change of search 

parameters produced better solutions more often, although there was no statistical 
evidence to support this. However, dynamically changing the search parameters had no 
obvious effect on the running time. Furthermore, the neighborhood order did not seem 
to have an effect on the solution quality, but the running time was obviously lower for a 
specific neighborhood order, compared to all other orders. As for the competitive 
analysis, it was shown that the online hybrid was capable of producing almost as good 
solutions as its offline algorithm counterpart. This was a good indication of how well 
the developed hybrid could perform under dynamic conditions. 
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Chapter 1         Introduction 1 

INTRODUCTION 

 

1.1 Overview and problem statement 

The General Pickup and Delivery Problem with Time Windows (GPDPTW) is a 

generic model representing a whole class of problems, in which a fleet of vehicles is used to 

satisfy a set of transportation requests. In doing so, a route must be constructed for each 

vehicle detailing which transportation requests to visit, and the order of the visits. Each visit 

should be performed within specified time periods. In mathematical modeling terms, a 

complete weighted digraph ),( ENG =  (i.e. a graph in which every pair of distinct vertices is 

connected by an edge, associated with a cost, and the vertices are ordered pairs) consists of a 

set of nodes }...,3,2,1{ nN =  representing locations, which are often associated with revenues 

rvi and time windows ],[ ii ba  during which a visit must be performed, and a set of edges 

},|),{( NjijiE ∈=  representing arcs connecting the locations; edges are associated with 

weights detailing the cost, distance, or travel time incurred upon traversing them. A fleet of 

vehicles mkkV ,...,1},{ ==  is used to transport goods from one location to the other, usually 

from a central depot to customer locations, but that is not necessarily the case. Vehicles can 

be homogeneous in terms of capacity qk, traveling costs cijk, and compatibility, or they can be 

heterogeneous; the compatibility issue is concerned with the vehicle’s ability to serve specific 

customer requests.  

 

The solution to a vehicle routing problem with time windows is a routing plan (a 

sequence) }...,,{ 321 ik nnnnS = for each vehicle specifying the locations to visit, the order of the 

visits, and the arrival and departure times for each visit (scheduling visits). The solution must 

satisfy all problem constraints. Finally, an objective function to be optimized is used to guide 

the search for a solution, usually the objective is a cost function to be minimized (traveling 
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cost, distance, or time, number of vehicles used, response time… etc.), it may be a service 

level function to be maximized (number of customers served, revenue generated… etc.), or a 

combined weighted function (minimizing traveling cost and number of vehicles used). See 

figure 1. 

 

 

 

 

 

 

 

 

 

 

1.2 Importance of the study and area of application 

Vehicle routing models can be used to solve many real life applications some 

examples include but are not limited to: pickup and delivery of courier mail parcels, 

transportation of handicapped / elderly people, locating emergency medical service facilities, 

and dispensing salt or grit on snow-covered roads. As with all other models, not all problem 

characteristics can be captured. However, some models are closer to reality than others, the 

difference being in the constraints added, relaxed, or removed from the general model, and 

therefore creating a problem variant, in order to strike a balance between representing reality 

and solving the model with the given resources (e.g. within reasonable time). The most 

common problem variants are: the Capacitated Pickup and Delivery Problem (CPDP) in 

which different vehicles have different capacity limits, Pickup and Delivery Problem with 

Depot 

Vehicle 1, route 1 

Vehicle 2, route 2 

Vehicle 3, route 3 

Figure1. The vehicle routing problem 
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Time Windows (PDPTW) in which transportation requests must be satisfied within specific 

time periods, and the Vehicle Routing Problem (VRP) in which vehicles have fixed starting 

and ending locations, usually at a central depot. Other problem constraints are: precedence 

and coupling constraints (a pickup request must be served before the delivery request and 

both must be done by the same vehicle), heterogeneous fleet (vehicles have different 

capacities, speed, traveling costs…etc.), multi-depot VRP (vehicles are dispatched from 

multiple centers and each center serves a certain geographical area), vehicle compatibility 

constraint (certain visits require certain vehicles to perform the service, a common example is 

technician/repairman dispatching), and fixed or open starting / ending locations for vehicles 

(not all vehicles are required to begin / finish their routes at a fixed location like the depot). 

 

When some problem variant is used to model a real life application, two major issues 

must be addressed: the availability of input information, and the certainty of the information. 

The availability of input information deals with the time when all needed information 

becomes accessible to the search algorithm. Information can be known entirely before the 

search begins (i.e. planning the routes), in which case the problem is considered static and the 

solution found will be the only solution executed for that problem, or, on the other hand, 

information can be known partially before the search begins and only an initial solution can 

be found (based on the partial information available at that time), as the remaining part of 

information becomes available the initial solution must be modified to accommodate such 

new input if possible; hence, the solution dynamically changes whenever new information 

appears and the problem is considered dynamic. The other major issue, certainty of 

information, deals with the variability of available information. At one end, information is 

known for certain and can not vary (i.e. deterministic), and at the other end, information is 

not known for certain and can vary (i.e. stochastic). The simplest example is the travel times, 

A
ll 

R
ig

ht
s R

es
er

ve
d 

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n 
- C

en
te

r  
of

 T
he

si
s D

ep
os

it



www.manaraa.com

Chapter 1         Introduction 4 

they can be assumed to be constant, or, if one wishes to model a more practical situation, 

travel times should be random variables. With that in mind, any problem variant can be 

deterministic or stochastic and, at the same time, be static or dynamic. As expected, a 

stochastic dynamic problem is harder than a deterministic static problem and is closer to 

modeling real life scenarios. 

 

1.3 Objectives 

Given the vast number of problems that can be modeled, the focus of this work is on 

the dynamic deterministic pickup and delivery problem with time windows; the area of 

application is the courier mail delivery in which small parcels are picked up from one 

location and delivered to another on the same working day. The model will be solved using a 

hybrid local search metaheuristic; specifically, the objectives are three fold: 

1. Create a hybrid metaheuristic to solve the dynamic pickup and delivery problem with 

time windows; the hybrid is based on Tabu Search, Guided Local Search, and 

Variable Neighborhood Search. A brief on these methods is in the Methodology 

chapter. 

2. Investigate the effect of changing the neighborhood order on solution quality and 

solution speed (in the Variable Neighborhood Search context).  

3. Investigate the effect of dynamically changing search parameters on solution quality 

and solution speed (in the Tabu Search and Guided Local Search context). 

 

1.4 Outline 

The remainder of this study is organized as follows: chapter 2 overviews the 

theoretical background needed and previous work in literature; section 2.1 overviews 

optimization problems in general, and specifies which type is used in this study, section 2.2 
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discusses search algorithms and their classifications, section 2.3 presents the related topics 

from the computational complexity theory, section 2.4 compares online optimization to 

offline optimization, and how competitive analysis is used as a performance measure for 

online algorithms, section 2.5 classifies the application area of this study (i.e. the dynamic 

pickup and delivery problem with time windows), and points out its major difficulties, 

section 2.6 gives a brief about solution approaches, and finally, section 2.7 reviews the most 

important work in literature, and specifies what this study adds along with the mathematical 

model used to do so. Chapter 3 overviews the metaheuristics used and the experimental 

methodology followed; section 3.1 specifies the solution approach followed in this study, 

section 3.2 presents the hybrid metaheuristic used, and section 3.3 lays out the experimental 

procedure for this study. Chapter 4 validates and discusses the results. And finally, chapter 5 

concludes this study and recommends future extensions. 
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LITERATURE REVIEW  

 

2.1 Optimization problems 

The term optimization, or mathematical programming, is a field of mathematics 

concerned with systematically selecting values for real or integer variables such that a 

real function, called an objective function, is minimized or maximized. The variables 

must be chosen from a specified set known as the feasible region or search space; 

hence, optimization problems are considered search problems. 

 

Definition 2.1 The optimization problem (Paepe, 2002) 

An optimization problem ∏ is a three-tuple (I, S, f) such that: 

• I is the set of the instances for ∏ . 

• Given an instance i ∈  I, Si denotes the set of feasible solutions of I. 

• Given an instance i ∈  I, fi is the objective function that attributes to each 

feasible solution x of I a real number fi (x), the so-called objective value of x. 

 

The goal is to determine if, for a given an instance i ∈ I, there is a feasible 

solution, and if so, to find the feasible solution that has the smallest, or largest, 

objective function value amongst all feasible solutions; that is, a feasible solution x* 

such that: fi (x*) = min/max {fi (x) : x ∈  SI} . 

 

The major subfields of optimization are: linear programming, non linear 

programming, integer programming, mixed integer programming, dynamic 

programming, stochastic programming, and many others. This study focuses on a class 

of mixed integer programming called combinatorial optimization. 
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Definition 2.2 Mixed Integer Program (Nemhauser and Wolsey, 1999) 

min/max ),,:( Pn RyZxbGyAxhycx ++ ∈∈≤++                 … (1) 

 

Where Z is the set of nonnegative integral n-dimensional vectors, R is the set of 

nonnegative real p-dimensional vectors, and x and y are the decision variables. The 

problem is called a mixed integer program because it contains both integer and real 

variables. An instance of the problem is specified by the matrices / vectors: 

)1(),(),(),1(),1( ××××× mbandpmGnmAphnc . The set }:,{ bGyAxRyZxS nn ≤+∈∈= ++  is 

called the feasible region, or search space, a pair Syx ∈),(  is called a feasible solution, 

the function hycxz +=  is called an objective function, and a feasible solution *)*,( yx  for 

which the objective function is as small / large as possible 

(i.e. Syxhycxhycx ∈∀+≤+ ),(** ) is called an optimal solution. It is possible to have a 

problem with no optimal solution, this occurs when either the problem has no feasible 

solutions, or the constraints do not prevent improving the value of the objective 

function indefinitely in the direction of one or more of the variables (increasing or 

decreasing); thus, solving an instance of a mixed integer programming problem means 

finding an optimal solution, or showing that it is either infeasible or unbounded. 

 

While there is no generally agreed upon definition of combinatorial 

optimization, it can be stated that combinatorial optimization is a part of integer 

programming that is concerned with the arrangement, grouping, ordering, or selection 

of discrete objects (decision variables) from a finite set (search space), such that an 

objective function is minimized or maximized. The above mathematical formulation 

also holds for combinatorial optimization. 

 

A
ll 

R
ig

ht
s R

es
er

ve
d 

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n 
- C

en
te

r  
of

 T
he

si
s D

ep
os

it



www.manaraa.com

Chapter 2  Literature review 8 

2.2 Algorithms 

  Given an optimization problem the question becomes: “how to find the optimal 

solution.” One needs a search strategy that systematically explores the search space and 

finds the optimal solution, randomly selecting feasible solutions from the search space 

will simply not do; it requires a lot of time and there is no guarantee that the optimal 

solution will be found. The search strategy is known as the search algorithm. 

 

Definition 2.3 Search Algorithm (Paepe, 2002) 

An algorithm A for an optimization problem is a general step-by-step procedure that, on 

every instance, outputs a feasible solution Syx ∈),( , or outputs that it cannot find a 

feasible solution. Search algorithms can be broadly classified as either informed or 

uninformed algorithms.  

 

An uninformed algorithm, also known as brute-force search, is a very general 

search strategy that systematically enumerates all possible solutions in the search space, 

and checks them against the problem's statement (objective function and constraints). 

By doing so, it guarantees finding an optimal solution, if one exists. However, when the 

search space is large, which is common for many practical problems, fully enumerating 

the solutions will take a very long time; consider the example of arranging 10 items, 

there are 3,628,800 (10!) different ways to do so, which can be fully explored within 

less than one second using an average computer; if the problem is to arrange 15 items, 

there will be about 1.3*1012 possible solutions, which will take a few minutes to check 

on a computer; however, if the input to the problem increases to 20 items, there will be 

about 2.4*1018 possible solutions to explore which will take about 10,000 years! All of 

this assumes that the computer has all the solutions ready to be tested and that no 
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solutions have to be generated. The point of this is to show how the search space 

increases dramatically as the size of the problem input increases; this is known as the 

combinatorial explosion. 

 

An informed algorithm, on the other hand, uses some heuristic information (a 

heuristic is a Latin word meaning "to find" and can be thought of as an educated guess, 

a rule of thumb, a judgment call… etc.) to guide the search, and reduce the size of the 

search space; hence, it requires much less time than brute-force search. Nevertheless, it 

is not concerned with finding an optimal solution, any feasible solution would do. In 

other words, a heuristic algorithm compromises solution quality for faster running 

times. An example of heuristic information that can be used to solve an optimization 

problem is the “shortest processing time” heuristic used in scheduling; consider the 

problem of scheduling jobs on a machine with the objective of minimize penalties for 

late deliveries, one way to solve this problem is to work on jobs with shorter processing 

times first, then on jobs with longer processing times, this way more jobs will be 

finished in a work shift; while this approach may offer a good solution, it is not 

necessary the optimal solution; specific penalty costs for each job must be considered. 

The point is that using heuristics does not guarantee finding an optimal solution, nor 

does it produce consistent results for different problem instances, still, it can produce 

good solutions in a short time. 

 

Yet another classification, that is relevant to this study, is the deterministic 

versus nondeterministic (randomized) algorithms. A deterministic algorithm is an 

algorithm that, given a specific input, always produces the same output, and the 

machine used to execute this algorithm will always go through the same sequence of 
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states (a state describes what a machine is doing at a particular instant of time), and 

such states are predetermined for each input. However, in many applications 

deterministic algorithms are very slow and impractical, for example given a list of n 

elements of which half are labeled with the letter A and the remaining half are labeled 

with the letter B, and it is required to find any element labeled as A. Using an algorithm 

that examines each element, and assuming that B-labels are sorted first, it will take n/2 

operations to find the first A-labeled element, and for large values of n it will take a 

long time. In fact, for any deterministic algorithm, one can pass a problem instance that 

will cause the deterministic algorithm to perform in the worst possible manner. On the 

other hand, if we were to check the elements at random, then we will quickly find an A-

labeled element with high probability, regardless of how the problem instance is 

presented. A nondeterministic algorithm uses some sort of random numbers as part of 

its input (or execution) and therefore produces a random output (random variable). 

Such classification will be used to explain the concept of competitive analysis later on. 

  

2.3 Computational complexity theory 

Whether an informed or an uninformed algorithm is used to solve an 

optimization problem, one seeks to find, and use, the “most efficient” algorithm for a 

given problem. Broadly speaking, the efficiency of an algorithm is measured by the 

resources needed by the algorithm to solve the worst-case problem instance. The 

branch of computer science that is concerned with this problem is known as the 

computational complexity theory, it is not to be confused with computability theory 

which is concerned with determining if a problem can be solved or not, regardless of 

the resources needed. The most common resources needed by an algorithm are time and 

space.  
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The space complexity function simply measures the amount of computer 

memory required by the algorithm. On the other hand, the time complexity function 

expresses time requirements by giving, for each possible input length (i.e. the number 

of bits required to encode an input), the largest amount of time needed by the most 

efficient algorithm to solve a problem instance of that size (Johnson and Garey, 1979). 

Of course, this function is not well-defined until one fixes the input encoding scheme, 

and the computer model used. This is why the Big O notation was created; it is a 

standard approach for estimating, and comparing, the complexity of algorithms, in spite 

of the encoding scheme or computer model used. The only requirement is the input size 

of the problem.  

 

For example, if a problem has an input size of n and it takes an algorithm a total 

of 2n steps to reach a solution, we say that the complexity of the algorithm is a function 

of n; whether it is 2n or 3n + 9 does not really matter, what matters is that the 

complexity is proportional to n not n2 or n3 (i.e. it is in the “order” of n). Using the Big 

O notation, its complexity is written as O(n). Suppose a complexity function is 3n3 + 

2n2 + 12, its Big O notation would be O(n3) as the fastest growing term n3 will 

overwhelm all other terms when n is large enough (Kreyszig, 1999).  

 

It should be noted, however, that if, for example, an algorithm has a complexity 

of O(n2), then at least one problem instance of size n takes that much time to solve, not 

all problem instances. In fact, most problem instances will take much less time. 

Formally speaking, a function f(n) is in the order of another function g(n) (denoted as 

f(n) = O(g(n))) whenever there exists a constant c such that )()( ngcnf ≤  for large 

positive values of n. A polynomial time algorithm is defined as one whose time 
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complexity function, for some polynomial function p, is O(p(n)); while an algorithm 

whose time complexity function can not be bounded by a polynomial function, is called 

an exponential time algorithm. Thus, a problem that can not be solved by a polynomial 

time algorithm is considered intractable, for large input sizes.  

 

As mentioned earlier, optimization problems (and combinatorial optimization 

problems) are considered search problems; for each search problem one can associate a 

decision problem which consists of the original search problem, the three-tuple (I, S, f), 

and an additional input parameter known as the bound (B); however, the question about 

a decision problem is not what the optimal solution is, but rather about whether or not 

there exists a solution x ∈  Si such that f(x) ≤ B, for a given instance I, which is 

answered with a simple yes or no. Obviously, solving the search problem entails 

solving the corresponding decision problem, but the opposite is not necessarily true. A 

decision problem can not be harder than the corresponding search problem; it can be as 

hard as the search problem, but never harder. Therefore, if a decision problem can be 

proved to be intractable, its corresponding search problem is also intractable. 

 

One can classify, or group, computational problems and algorithms with related 

complexities into what is known as complexity classes. The theory of NP-completeness, 

which is a part of the computational complexity theory, differentiates between two 

complexity classes; P and NP. Of course there are many other classes, but these are the 

ones that are relevant. To understand how problems are classified as P or NP, consider 

the subset sum problem, which is this: for a given set of integers, is there a nonempty 

subset which sums up to zero? This is a decision problem. For example, does the set {-

1, 6, 3, -9, 1, -5, 4} contain a nonempty set that sums up to zero? Of course, the answer 
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is yes; the subset {6, 3, -9} sums up to zero. Verifying that the subset {6, 3, -9} sums 

up to zero is relatively “easy”; nevertheless, finding such a subset from the original set 

is not that easy.  

 

The information needed to verify a “yes” answer is called a certificate, one can 

think of a certificate as a given solution; in this case the certificate was the subset {6, 3, 

-9}. Now, a decision problem that is given a certificate, for which a positive “yes” 

answer can be verified within a polynomial time, is placed in the class NP; on the other 

hand, a decision problem that can be solved within a polynomial time, but has no 

certificate, is placed in the class P. Formal definitions of the classes P and NP can be 

found in Cook (1971) and in Garey and Johnson (1979). The question about whether a 

solution, to a decision problem, can be computed as easily as it can be verified remains 

unanswered, in fact it is a well known question in theoretical computer science; if a 

“yes” answer to a decision problem can be verified "easily" (i.e. in polynomial time), 

can the answers themselves also be computed in polynomial time? Put differently, does 

P = NP? Clearly, P ⊆NP, but nothing can be said about whether or not P = NP.  

 

On this matter, the concept of reduction is important. Basically, reduction is the 

means by which any instance of one problem can be transformed into an equivalent 

instance of another problem. If problem A can be solved using a polynomial time 

algorithm and problem B can be reduced to problem A using a polynomial time 

reduction (i.e. using a polynomial time algorithm for the reduction), then one can find a 

polynomial time algorithm to solve problem B. Thus problem A is always harder to 

solve. We say that a problem is NP-hard, if every other problem in NP can be reduced 

to it in polynomial time; however, this does not mean that NP-hard problems belong to 
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the NP class. In fact, an NP-hard problem that is in NP is called NP-complete; thus, 

NP-complete are the hardest set of problems in NP and if problems in NP-complete can 

be solved using a polynomial time algorithm, then all other problems in NP can be 

solved in polynomial time (Dorigo and Stutzle, 2004). Likewise, if there is a 

polynomial time solution for NP-hard problems, then NP-complete, and hence all NP, 

problems can be solved in polynomial time. See figure 1. An interesting note is that 

even if P = NP, NP-hard problems would still remain outside that complexity class, 

indicating how hard it is to solve such problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4 Online versus Offline problems 

Figure 1. Complexity classes, by Esfahbod (www.wikipedia.org, October 2008) 
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In most real life applications not all input data, or input sequence, required to 

solve the optimization problem is available / known in advance to the algorithm; 

information is revealed as time passes, this is known as an online optimization problem, 

as opposed to an offline optimization problem where all input data, and sequence, is 

known a priori. Almost all online problems have an offline counterpart. The solution 

approach to online problems would be to find an initial solution given the partial 

information available, executing this initial solution, and then modifying it as more 

information unfolds over time, using what is known as an online algorithm. This means 

that the online solution can not be better solution than the offline solution, assuming the 

offline solution is optimal. A common example is the courier mail delivery where a 

vehicle has to make a set of predetermined delivery stops in addition to making pickup 

stops that are received throughout the day. 

 

The efficiency of online algorithms can be evaluated using what is known as 

competitive analysis, which was first introduced by Sleator, et al. in 1985. A basic 

concept in competitive analysis is that of the competitive ratio, a performance measure 

for online algorithms, where an online algorithm is compared to an offline algorithm 

that produces an optimal solution. Let ∏ be a maximization problem with an objective 

f, let O be an offline algorithm returning an optimal solution O(I) for f, on a fully 

revealed input sequence I, and let DA be a deterministic online algorithm. The 

performance of DA is measured by the ratio between the optimal offline value f(O(I)) 

and the value f(DA(I)) over each possible input sequence I (Hentenryck, 2006). That is: 

))((

))((
max

IDAf

IOf
I

                    … (2) 

 

Definition 2.3 c-competitiveness for deterministic algorithms (Kallrath, 2005) 
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A deterministic online algorithm DA is said to be c-competitive if, for all input 

sequences I, the ratio between the optimal offline value f(O(I)) and the value f(DA(I)) is 

bounded by c. That is: 

α+≤ c
IDAf

IOf

))((

))((                    … (3) 

Where α is a constant added to make up for any initial condition differences between 

the online and offline algorithm. 

 

As mentioned earlier, any deterministic online algorithm can be set to perform 

as worst as possible by passing the hardest problem instance(s) to it, this is what is 

known as an adversary. Competitive analysis implicitly assumes a worst-case problem 

instance is passed to the online deterministic algorithm, and is therefore not 

representative of the practical performance of the online algorithm. More details on the 

drawbacks of competitive analysis can be found in Koutsoupias and Papadimitriou 

2000. To overcome this issue, randomized algorithms can be used instead; however, 

this requires a new definition of the competitive ratio which in turn depends on the type 

of adversary used.  

 

Borodin and El-Yaniv (1998), show that there are three types of adversaries: the 

oblivious adversary, which chooses an input sequence in advance based only on the 

description of the online algorithm, it cannot adjust its input sequence based on the 

behavior of the online algorithm afterwards; the adaptive offline adversary, which can 

build / change the input sequence online and can base future requests on the actions of 

the online algorithm on previous requests; and finally, the adaptive online adversary, 

which can build the input sequence online like the adaptive offline adversary, but it 
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must also generate its own solution online. Clearly, adaptive adversaries are more 

powerful than the oblivious adversary. 

 

Definition 2.4. c-competitiveness for randomized algorithms (Paepe, 2002) 

A randomized online algorithm RA is said to be c-competitive against an oblivious 

adversary if, for all input sequences I, the ratio between the optimal offline value 

f(O(I)) and the value f(RA(I)) is bounded by c. That is: 

c
IRAf

IOf ≤
))((

))((                     … (4) 

Only an oblivious adversary will be used throughout this work. 

 

2.5 Classification of the dynamic routing problem and related difficulties 

As pointed out in the introduction, this work focuses on the dynamic pickup and 

delivery problem with time windows. In what follows, classification of the problem, 

how it differs from its static counterpart, and the related difficulties / issues brought on 

by being dynamic are presented. Psaraftis (1988) states that: “if the output of a certain 

formulation is a set of preplanned routes that are not re-optimized and are computed 

from inputs that do not evolve in real-time, then the problem is considered static” (pp: 

3); on the contrary, Psaraftis (1988) states that: “if the output is not a set of routes, but 

rather a policy that prescribes how the routes should evolve as a function of those 

inputs that evolve in real-time, then the problem is considered dynamic” (pp: 4). 

Clearly, time is an essential element in the classification of the problem; based on that, 

the static routing problem is characterized by: 

• All relevant information (e.g. customer locations, service times, travel times, 

demand... etc.), to solve the problem, is known to the algorithm before the 

execution of the solution begins. 
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• All information related to the solution does not change after the problem is 

solved (routes created). 

And the dynamic routing problem is characterized by: 

• Not all relevant information, to solve the problem, is known to the algorithm 

when the execution of the solution begins. 

• Some information can change after the initial solution is created. 

 

So, at any time t, in the dynamic vehicle routing problem, there are: completed 

visits corresponding to the part of the route that is already executed, this part cannot be 

modified afterwards, current visits corresponding to the location of vehicles, planned 

visits corresponding to the part of the route that is not yet executed, and new visits that 

dynamically appear over time and have to be satisfied by one vehicle if possible. See 

figure 2. 

Figure 2. Dynamic vehicle routing 
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Psaraftis (1988) and Psaraftis (1995) lists twelve issues / difficulties brought on 

by the dynamic routing problem as opposed to the static routing problem, below is a 

brief discussion on the most important: 

1. Time is critical: when a new request appears, the customer expects an 

immediate answer whether his / her request can be satisfied on the same day or 

not. So, the time available to find a feasible insertion point for new requests is 

seconds, not minutes; in addition, once new requests are inserted, a re-

optimization is run, this re-optimized solution is the one dispatched, so re-

optimization can not last a long time as this will leave some vehicles idle. 

2. The time a new visit appears (τ): a new request arriving a few minutes before its 

deadline, or before the end of the working day, is much more difficult to satisfy 

than a request arriving several hours in advance. 

3. Time constraints may be soft: in many practical situations a customer requesting 

an immediate service will most likely tolerate little violations in the time 

windows, this of course comes at an added extra cost to the objective function. 

4. Near-term requests may be more important: in a dynamic setting it would be 

unwise to immediately commit vehicles to long-term requirements, as new 

requests may appear at any time. Mitrović-Minić, et al. (2004), propose a 

method to balance between committing to short-term and long term requests, 

the method is called double horizon. 

5. Future information may be uncertain or unknown: in a dynamic setting future 

requests are not known with certainty, at best they are probabilistic. 

6. Flexibility to vary vehicle fleet size is lower: in a static setting, the time 

between finding a solution and executing it allows the adjustment of the fleet; 

however, in a dynamic setting backup vehicles may not be available. 
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7. Commit policy: at some point in the execution of a solution, the vehicle must be 

committed to its next destination(s). Prior to this time, the solution can change, 

but once a particular part of the solution has been committed to, that part can 

not change. When to make such a commitment is a fundamental question in 

dynamic routing, one policy is a “latest commitment” policy, where 

commitment is left until the last possible moment, the next visit is only 

communicated to the vehicle at the latest possible time that will allow it to reach 

that visit (and all subsequent visits in the current temporary solution) by its 

deadline. 

8. Critical node: a critical node is defined as a customer who is currently using a 

vehicle, or to whom a vehicle is heading. Critical nodes need to be identified 

instantly when a real-time demand arrives so that the route can be reconstructed. 

Critical nodes can be easily identified graphically, for example in figure 2 above 

(page 18) nodes D, I, and M are critical nodes. Mathematically put, if vehicle k 

is traveling from node i to node j through node h (i � h � j), and the departure 

times from the nodes are: di, dh, and dj, then a critical node, at time τ, is 

identified as h if hi dd ≤< τ , or j if jh dd ≤< τ  

9. Inserting new visits and re-optimization: when new visits appear they have to be 

inserted into the current solution and the solution is then re-optimized, this can 

cause problems as the improvements may conflict with the new visits, to deal 

with this one can:  

• Abort the search whenever new visits are added to the current solution, 

and then restart it from scratch. This method may degrade the efficiency 

of the re-optimization as it is not allowed to run for a sufficient amount 

of time in most cases. 
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• New visits may be stored until the search finishes and then inserted 

altogether; however, the feasibility of the new visits may not be known 

at the time of accepting them. 

• New visits could be accepted and included in a tentative solution, once 

the re-optimization ends, only improvements that do not conflict with 

the new visits are incorporated. 

 

2.5.1 Measuring the difficulty of a dynamic routing problem; the degree of 

dynamism:  

With the above mentioned issues, a common measure of difficulty is required to 

compare problem instances, the degree of dynamism is generally accepted as such a 

measure. Lund, et al. (1996) were the first to introduce this concept; basically, the 

degree of dynamism (dod) for a given instance is the number of dynamic / immediate 

requests appearing throughout the day nimm divided by the total number of request 

served on that day ntot (i.e. the static requests plus the dynamic requests). 

tot

imm

n

n
dod =                     … (5) 

 

However, this measure does not take into account the time dynamic requests 

become available; meaning, a problem instance with 25 immediate requests, out of a 

total of 100, appearing near the beginning of the working day would have the same 

degree of dynamism as an instance with 25 immediate requests, out of 100, appearing 

near the end of the working day. See figure 3. Clearly, requests in case 2 are much 

more difficult to satisfy, and they do not allow much time for the re-optimization 

algorithm to run; hence, even if such requests could be satisfied, solution quality is 

A
ll 

R
ig

ht
s R

es
er

ve
d 

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n 
- C

en
te

r  
of

 T
he

si
s D

ep
os

it



www.manaraa.com

Chapter 2  Literature review 22 

likely to be poor, because there is not much time to search for a solution, as opposed to 

case 1. 

 

 

 

 

 

 

To overcome this issue, the effective degree of dynamism (edod) is defined as 

the average of how late the requests are received (ti) compared to the latest possible 

time (i.e. T) the requests could be received (Larsen, 2001).  

tot

n

i

i

n

T

t

edod

imm

∑
== 1                     … (6) 

This measure ranges between 0 (a completely static system) to 1 (a completely dynamic 

system, where all requests are received at time T), that is: 

immii

iTt

niTtlts

edod
i

...3,2,1..

1lim

=∀≤−

=∀→                   … (7) 

 

Time windows can also be incorporated into this measure as follows; let ei be 

the earliest time a service can begin, let l i be the latest time the service can begin, and 

let r i be the response time; difference between the latest time a service can begin and 

the time the request appears (i.e. ri = l i - ti). In figure 4 it is clear that in case 2 the 

requests are much harder to satisfy than in case 1.   

 

 

Figure 3. Arrival times of dynamic requests 
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Larsen (2001) extended the edod to included time windows like so: 

)
)(

(
1

1
∑

=

−−
=

immn

i

ii

tot
tw T

tlT

n
edod                   … (8) 

 

2.6 Solution approaches 

In general, there are two major solution approaches for optimization problems: 

exact methods, and approximate methods; exact methods guarantee reaching an optimal 

solution to any problem instance, assuming the required resources are available (i.e. the 

solution algorithm is allowed to run for a sufficient amount of time, and there is enough 

computer memory to withhold all necessary data while the algorithm is running). Such 

methods include: branch and bound, branch and cut, branch and price, Lagrangian 

relaxation, and column generation. Nevertheless, because of combinatorial explosion 

(mentioned earlier), and the resources required to reach, if possible, an optimal solution 

for NP-hard and NP-complete problems, one can not afford the time, or memory, 

needed to reach such a solution; and so, some sort of a trade off between solution 

quality (i.e. reaching an optimal solution) and resources required (mostly time), to find 

such a solution, is needed. In doing so, heuristic and metaheuristic approaches were 

created as approximate methods. 

Time 

Time 
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Figure 4. Effective degree of dynamism with time windows 
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Approximate methods can be classified as constructive methods and local 

search methods (Larsen, 2001 and Dorigo and Stutzle, 2004). Step by step and without 

backtracking, constructive methods build a complete solution by incrementally adding 

solution components to an empty solution. The choice of which solution component to 

add at each step is usually based on heuristic information; still, solution components 

can be added at random in some cases. As an example, consider the problem of finding 

the shortest route that starts and ends at the same location passing through a number of 

other locations. See figure 5. One constructive method would be to start from a point 

and then move to a point closest to the current point (this is known as the nearest-

neighbor heuristic); starting from point A, the solution will be: A � B � C � D � E 

� F � A 

 

 

 

 

 

 

The point to stress is that although heuristic approaches produce solutions fast, 

the solutions are not optimal and the approach is inconsistent when applied to different 

instances of the same problem. Local search, on the other hand, starts with an initial 

feasible solution and tries to improve it by making a small change to the current 

solution, to produce a new solution. This new solution is tested against the problem 

constraints for feasibility, and its cost is computed. If the new solution is feasible and 

has a reduced cost, it is accepted as the current one; otherwise, the current solution 

remains unchanged. This process is repeated (using different solution changes on 

Figure 5. Nearest neighbor heuristic (Dorigo and Stutzle, 2004)  
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subsequent tries) until some stopping condition is met; the stopping condition can be 

based on time, number of changes attempted, or the fact that no more changes to the 

solution can be found and accepted under the specified conditions. This is known as a 

greedy search method as it accepts only improving moves, it will be shown later how 

this could affect the quality of the solution. 

 

Local search requires the definition of a neighborhood structure (a 

neighborhood is a set of solutions that can be reached from the current solution in one 

single step), and an examination scheme that determines how the neighborhood is 

searched and which neighbor solutions are accepted. Creating a neighborhood structure 

is very dependent on the problem and may have many forms, a common example is the 

k-exchange neighborhood structure; basically, the k exchange neighborhood of a 

candidate solution s is the set of candidates solutions s’ that can be obtained from s by 

exchanging k solution components; for example, in figure 5 above a 2-exchange 

neighborhood consists of the set of all the candidate solutions s’ that can be obtained by 

exchanging two pairs of arcs in all possible ways. See figure 6. 

 

 

 

 

 

 

The examination scheme either uses the best accept rule, which chooses the 

neighbor solution giving the largest improvement in the objective function value, or the 

first accept rule, which accepts the first improving move found. Regardless of which 
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Figure 6. 2-exchange neighborhood (Dorigo and Stutzle, 2004) 
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examination scheme is used, local search can only produce optimal solutions within its 

defined neighborhood, meaning local search will, at best, terminate at a local optimal 

solution.  

 

To escape local optima, metaheuristics were created. A metaheuristics (“meta” a 

Latin word meaning “beyond”) is a master strategy, or a general framework, that guides 

and modifies other heuristics to produce solutions beyond those normally identified by 

local search heuristics (Glover, 1986; and Glover and Laguna, 1993). Compared to 

exact methods, such as branch-and-bound, metaheuristics cannot generally ensure the 

exploration of the entire search space; still, they provide guidance to areas of the search 

space containing high quality solutions. Well-designed metaheuristics avoid getting 

trapped in local optima or cycling (sequencing the same visited solutions over and 

over), and have a mathematical proof of reaching optimal solutions if allowed to run for 

a sufficient amount of time.  

 

One way to escape local optima is to allow degrading moves to be taken, 

consider the following example: 





=

∈

+++=

differentareyandx

similarareyandx
z

yx

where

zcyxct

,1

,0

]1,0[,

)1()(cosmin

 

Variables x and y are the decision variables (binary variables), c is a constant, and z is 

also a binary variable which equals 0 if both x and y are similar (i.e. either both are 0 or 

both are 1); otherwise, z will have a value of 1. Now assume that the current solution is 

at point x = 1, y = 1 and assume that only one variable can be changed at a time (i.e. a 

move from one solution to another in the neighborhood entails changing only one 
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variable), clearly no one single move can be taken, from the current solution, to reduce 

the objective function value (in fact, all moves will increase the objective function by 

1); nonetheless, a lower cost does exist (i.e. x = 0, y = 0) but can not be reached without 

increasing the objective function value first. See table 1. 

Table 1. Local optima example 
x y Cost 
1 1 2c 
1 0 2c + 1 
0 1 2c + 1 
0 0 0 

 

Clearly, this is a local optima problem which can be overcome by allowing 

degrading moves to be taken, in hopes that subsequent moves will produce better 

solutions. Care should be taken, however, about the way in which the objective 

function is allowed to degrade; to simply accept any move without guidance leads to a 

random walk through the search space, and is unlikely to bring about a good solution. 

Instead, metaheuristics use controlled methods of accepting degrading moves, in order 

to both escape local optima and then go on to find better solutions. 

 

2.7 Previous work 

The variety of applications that use routing models to solve routing problems is 

extensive; on one hand, the problem is to plan a route for one vehicle to deliver a 

predetermined amount of goods to a specified set of locations, with all needed 

information being known for certain and known in advance; and on the other hand, the 

problem is to plan a set of routes for a fleet of heterogeneous vehicles doing both 

delivery and pickups of goods at locations that are not all known in advance, but rather 

revealed over time, and with all the needed information being uncertain or probabilistic 

at best, add to that the time limitations set on performing each pickup / delivery visit. 

A
ll 

R
ig

ht
s R

es
er

ve
d 

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n 
- C

en
te

r  
of

 T
he

si
s D

ep
os

it



www.manaraa.com

Chapter 2  Literature review 28 

Needless to say that such a wide range has received a great deal of attention and 

research, and the amount of literature now available is enormous. In the efforts to 

provide a comprehensive, well structured review of the pervious related work, this 

section will be divided into three parts:  

• Part I: review of the static vehicle routing problem with exact solution methods. 

• Part II: review of the static vehicle routing problem with approximate methods. 

• Part III: review of the dynamic vehicle routing problem and its related difficulties. 

 

2.7.1 The static vehicle routing problem – exact methods 

As mentioned earlier, the static vehicle routing problem is concerned with 

finding an optimal route for a fleet of vehicles performing a predetermined set of visits. 

The vehicle routing problem is classified as NP-hard, and therefore can only be solved, 

to optimality, for small problem instances which have limited application. Exact 

methods include: Dynamic Programming, Lagrangian relaxation, and column 

generation; the most recognized work in each principle is summarized next. 

 

Kolen, et al. (1987) were the first to solve the vehicle routing problem with time 

windows to optimality using Branch-and-Bound and Dynamic Programming methods; 

each node, in the Branch-and-Bound tree, corresponds to three sets: set F which is the 

set of feasible routes starting and  ending at the depot, set P which is a partially built 

route starting at the depot, and set C which is a set of customers forbidden to be next on 

P; branching is done by selecting a customer that is not forbidden and that does not 

appear on any route, then two branches are generated: one in which the partially built 

route P is extended by the selected customer, and one where the selected customer is 

forbidden to be the next customer on the route, at each Branch-and-Bound node 
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Dynamic Programming is used to calculate a lower bound on all feasible solutions. A 

similar approach is used in Caramia, et al. (2002) for a multi-cab metropolitan 

transportation system; basically, a new request is first inserted in one of the planned 

routes and this route is then optimized using a Dynamic Programming algorithm; here 

too the approach is applicable only to small problem instances.  

 

Fisher, et al. (1982) use Lagrangian relaxation combined with a multiplier 

adjustment method to solve a mixed integer programming model of a commercial 

delivery system. Kohl, et al. (1997) relax the constraints guaranteeing that every 

customer is served exactly once and added a penalty to the objective function; the 

master problem now consists of finding the optimal Lagrangian multipliers and is 

solved by a sub-gradient optimization method; the sub-problem becomes the shortest 

path problem with time windows and capacity constraints, and is solved using a 

Dynamic Programming approach. Kallehauge, et al. (2006) use a column generation 

approach to solve the vehicle routing problem with time windows; a master problem 

and a sub-problem are created, and a branch-and-bound framework is employed along 

with acceleration strategies that increase the efficiency of branch-and-bound method. 

The approach, when tested against Solomon’s benchmark, produced the following 

regarding travel distance: 361.6 for R207.25, 370.7 for R209.25, 350.9 for R211.25, 

and 1143.2 for R201.100.  

 

Westphal and Krumke (2007), study a large scale real-world vehicle dispatching 

problem with soft time windows (i.e. time windows can be violated, but with an added 

extra cost to the objective function); they developed a pruning scheme based on 

matchings in order to speed up the branch-and-bound enumeration in the column 
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generation process; computational results on real-world data show that, overall, the 

computational time is less (only took 38% of the original time), and only 24% of the 

nodes were explored compared to the old pruning scheme. Laporte, et al. (2002) 

propose a stochastic integer programming framework to solve the stochastic vehicle 

routing problem (stochastic in the sense of random demand at each customer location), 

optimal solutions were reached for instances with at most 25 locations and using only 4 

vehicles. Letchfor, et al. (2006) propose an algorithm based on Branch-and-Cut to 

solve the open vehicle routing problem with capacity constraints (an open routing 

problem is one in which vehicles are not supposed to return to a specific location at the 

end of their routes); the algorithm was tested on several standard instances, small 

instances, and was able to produce optimal solution. Heuristic methods were then 

applied to the same instances and their “near-optimal” solutions were compared to the 

optimal ones. This, in turn, enabled the assessment of the solution quality produced by 

heuristic methods. 

 

2.7.2 The static vehicle routing problem – approximate methods 

With larger problem instances, exact solution methods are impractical and may 

sometimes never reach an optimal solution; thus, one compromises solution quality for 

solution speed. In doing so, heuristic and metaheuristic methods are used; in what 

follows, approximate methods will be categorized into constructive methods and 

improvement methods; later, some metaheuristics are reviewed. 

 

The first paper on constructive (route-building) heuristics, for the vehicle 

routing problem with time windows, was that by Edward, et al. (1986) in which they 

present an extension of the traditional Savings heuristic, the algorithm begins with all 
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possible single customer routes (depot � customer i � depot) and iteratively 

calculates which two routes can be combined resulting in the maximum saving (the 

saving between customers i and j is calculated as savingij = di0 + d0j - Gdij, where G is 

referred to as the route form factor). Landeghem (1988) describes a heuristic based on 

the Savings method with the additional criterion that models an intuitive view of time 

influence on route building in the vehicle routing problem with time windows; 

experiments show that this added criterion yields significantly better results to the 

problem compared to pure routing heuristics, and can compete (in terms of speed) to 

other heuristics specially built for this kind of problem; however, the savings heuristic 

generally produces solutions of lower quality as the last un-routed customers tends to 

be scattered over the geographic area.  

 

To overcome this problem, Potvin and Rousseau (1993) apply an insertion 

algorithm for the vehicle routing problem with time windows; the algorithm builds 

routes in parallel and uses a generalized regret measure over all un-routed customers in 

order to select the next candidate for insertion; numerical results on the standard set of 

Solomon’s benchmark problems compare well with other sequential algorithms 

presented by Solomon 1987, but are still far from optimal. In addition, Brown, et al. 

(1987) consider the problem of dispatching petroleum tank trucks under various 

constraints and applied an assignment and routing heuristic on known requests within a 

rolling horizon; the heuristic first assigns the loads to available vehicles and then solves 

a traveling salesman problem to optimize each route. Bausch, et al. (1995) addressed a 

similar problem but the heuristic used first generates clusters of customers for each 

vehicle type, then the total distance traveled is optimized within each cluster using 

either a heuristic or an exact algorithm, depending on the problem size. 
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The concept of neighborhoods is central to almost all route improving 

heuristics, examining some, or all, of the solutions in a neighborhood might reveal 

solutions that are better than the current one, in which case a move is made to that 

better solution, and the process is repeated; at some point no better solution(s) can be 

found and an optimal point is reached, in most cases this will be a local optimum, but it 

might be a global one. Maybe the most used improvement heuristic in routing problems 

is the k-opt heuristic; in its basic form (i.e. the 2-opt), one seeks a route that crosses 

over itself and reorders it so that it does not (CROES, 1958). Potvin and Rosseau 

(1995) present two variants of the k-opt heuristic: the 2-Opt* and the Or-Opt; in Or-Opt 

a segment of the route is moved to another place on the same route; whereas in the 2-

Opt* a segment of a route is exchanged with a segment of another route, computational 

results were only tested against randomly generated data sets.  

 

Osman (1993), created the λ-interchange neighborhood for the vehicle routing 

problem; here, a subset of customers of a size less than λ in one route is interchanged 

with a subset of size less than λ in another route; computational results reported on a 

sample of seventeen benchmark test problems, and nine randomly generated problems; 

the λ-interchange method improved the solution in terms of the number of vehicles 

used, and the total distances travelled. 

 

2.7.3 The dynamic vehicle routing problem and related difficulties 

The pickup and delivery problem is sometimes modeled as a dial-a-ride 

problem; the name originated from the application of transporting elderly, or 

handicapped, people from one location to another. A dynamic single-vehicle dial-a-ride 

problem was first addressed by Psaraftis (1980) with an exact algorithm; based on a 
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finite time horizon, a series of static problems was solved through a Dynamic 

Programming algorithm and optimal solutions for small problem instances were found 

within reasonable time. Later, Psaraftis (1983) generalized his approach to account for 

time window constraints, and in 1988 Psaraftis introduced a dynamic version of the 

Vehicle Routing Problem, where it was stated that if the solution is a set of preplanned 

routes that are not re-optimized and are computed from the inputs which do not evolve 

in real-time, then the problem is classified as static; on the other hand, if the solution is 

a policy that recommends how the routes should evolve as a function of the inputs that 

evolve in real-time, then the problem is classified as dynamic. Psaraftis presented a 

number of research topics the most important being whether a vehicle should wait at 

the current location, after finishing the service, in order to “batch” newly arriving 

requests, or travel immediately after the service; however, Psaraftis did not address 

these issues back then.  

 

 A few models were created in the early nineties which make use of queuing 

theory; basically, a vehicle is modeled as a traveling server moving from one customer 

location to the next. Such models required greater computational time and more 

complex mathematical solutions; therefore, they were not as popular as other models 

although they were more precise. The most comprehensive work using queuing models 

is that of Bertsimas and Ryzin (1991); they proposed a generic mathematical model for 

a single un-capacitated vehicle, traveling at a constant speed in the Euclidean plane. 

They called this problem the dynamic traveling repairman problem. The objective was 

to minimize the total time in the system (i.e. waiting time plus service time). Using 

approaches from queuing theory, simulation, combinatorial optimization, and 

probability, an optimal routing policy was found for light traffic conditions; in addition, 
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it was shown that the waiting time grows much faster, than that in traditional queues, as 

the traffic intensity increases.  

 

Shortly afterwards, Bertsimas and Ryzin (1991) extended their previous work 

by considering the case of multiple identical vehicles m, with unlimited capacity as 

well, and the case in which each vehicle can serve at most a predetermined number of 

customers. They showed that, in heavy traffic conditions, the system time is reduced by 

a factor of 1/m2 over the single-server case, they even extended their work further by 

using a more general probability distribution to describe the arrival of new requests (a 

renewal process instead of the Poisson distribution), and the request locations were 

assumed to be arbitrary, instead of being uniformly distributed. With these “more 

realistic” assumptions, Bertsimas and Ryzin showed that optimal policies used in the 

static vehicle routing problem can produce near optimal, and in some cases optimal, 

solutions for the dynamic version of the problem.  

 

Swihart and Papastavrou (1999) extended the dynamic traveling repairman 

model to include the same day pickup and delivery constraints (i.e. a vehicle must 

pickup goods from one location and deliver them to another location on the same day), 

both pickup and delivery locations are independent and uniformly distributed over the 

service region; a number of routing policies were tested against simulated data, and the 

nearest neighbor policy performed best in heavy traffic conditions for both the single 

and multiple vehicle cases. Kilby, et al. (1998) divided the working day horizon into 

fixed time slots during which arriving requests are only considered at the end of each 

time slot, and the optimization algorithm was thus allowed to run on the current static 

problem for the duration of a time slot.  
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A dynamic vehicle routing problem, with time windows, was considered in 

Gendreau, et al. (1998); here, a hybrid approach was used to solve operational 

problems facing long-distance courier mail companies; first, a simple insertion heuristic 

is used to insert dynamic requests, and then a Tabu Search with an adaptive memory is 

applied to the initial solution to improve it until the occurrence of the next event. The 

same approach was extended in Gendreau, et al. (1999) to accommodate for pickup and 

delivery of parcels in a local express mail company (the addition here is that the same 

vehicle should be used to do the pickup and delivery, and the pickup should proceed the 

delivery). A similar approach for a dynamic dial-a-ride problem was used in Attanasio, 

et al. (2004); here, the authors used a parallel implementation of a Tabu Search 

heuristic previously reported in Cordeau and Laporte (2003) for the static version of the 

problem; whenever a new service request occurs, an insertion heuristic is first applied, 

to know if the request can be accepted or not, then Tabu Search is applied to optimize 

the routes.  

 

A dynamic vehicle routing problem, with no time windows, was considered in 

Gambardella, et al. (2003) and in Montemanni, et al. (2005); here, the entire problem 

was solved as a series of static vehicle routing problems using Ant Colony System 

metaheuristic; useful information about the solutions produced is transferred from one 

static problem to the next through a pheromone conservation mechanism. 

 

An interesting approach that is seldom addressed in literature is that of 

diversion; Regan, et al. (1995) were the first to explore this idea; basically, it consists of 

diverting a vehicle away from its current planned destination to serve a request that has 

just occurred in its district. The work of Ichoua, et al. (2000) propose a broader view of 
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diversion in the context of a long-distance courier mail service where parcels are picked 

up from one area, brought back to a central depot, and then delivered to another area on 

the next business day. Addressing diversion in this context is more challenging, as 

consolidating and sequencing the requests becomes an important issue. A matter of 

concern in the diversion approach is the time allocated for the optimization algorithm; 

since vehicles are moving fast and dynamic requests may appear at any time, diversion 

opportunities are easily lost; basically, if the time allowed for the algorithm is too large, 

diversion opportunities can be lost. On the contrary, if the time is too small, solution 

quality might suffer.  

 

Yet another issue, that is central to dynamic routing problems in general, is that 

of anticipating future requests and how it affects routing decisions (e.g. relocating idle 

vehicles, accepting early requests, setting a cut off time for accepting requests… etc.). 

An approach introduced by Mitrović-Minić, et al. (2004), for a pick-up and delivery 

problem with time windows, is that of the double horizon. Here, both a short-term and a 

long-term planning horizons are considered, with different objective functions for each 

horizon; the objective of the short term horizon corresponds to the true objective (e.g. 

minimizing the total traveled distance), whereas the objective associated with the long-

term horizon tries to allocate larger slack times, in the constructed routes, to better 

accommodate future requests; the optimization is done for both objective functions 

using a simplified version of Tabu Search. 

 

In routing problems with time windows, scheduling the vehicle’s visits is a 

critical issue. Scheduling, in this context, means the determination of the arrival and 

departure times at each location; this, in turn, requires setting some waiting strategies at 
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each location. In static routing problems with time windows, the only waiting strategy 

is the drive first strategy; a vehicle should move from its current destination as soon as 

the service ends, thus causing it to wait at the next destination if it arrives before the 

time window begins. In a dynamic setting, however, the drive first strategy would not 

apply simply because new requests may appear at any time; it would be better for the 

vehicle to wait at the current destination, for as long as possible, in order to reach its 

next destination at its time window’s lower bound, thus allowing more new requests to 

arrive and be better inserted into the current routes. This is known as the wait first 

strategy, it is expected to produce shorter routes than the drive first strategy, but will 

require more vehicles to do so.  

 

Between the two extreme strategies (wait first and drive first) Mitrović-Minić 

and Laporte (2004) showed that a combination of both strategies gives the best results 

with regard to the number of vehicles and total traveled distance; their approach is 

based on the dynamic partitioning of planned routes into segments made of close 

locations; within a segment, a vehicle always departs as soon as possible from its 

current location; but when it is time to cross a boundary between two segments, the 

vehicle waits at its current location for a fraction of the time available up to the latest 

possible departure time. In Ichoua, et al. (2001), a vehicle that has completed its service 

at one location should wait for some amount of time if its next destination is far, and 

the probability of a new request arriving within its surrounding area, in the near future, 

is high enough; thus, probability distributions are used in the waiting strategies. 

 

This work is focused on the dynamic pickup and delivery problem with hard 

time windows and all relevant input data is assumed to be deterministic. As for the 
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degree of dynamism, some requests are assumed to be known a priori, and initial 

routing plans will be built upon them; still, there are requests that emerge afterwards 

which should be accommodated for if possible. The area of application for this model is 

the courier mail pickup and delivery problem, in which small parcels are picked up 

from one location and delivered to another location on the same working day; as the 

parcels are small (mainly documents), the capacity constraint is not considered, and the 

fleet of vehicles is assumed to be homogeneous. In addition, as the problem is dynamic 

the vehicle may visit the same location more than once (the customer may request more 

than one service per day), and hence the vehicle is not constrained to visit the location 

only once. The objective it to minimize the total distance traveled by all vehicles. 

Below is the mathematical model along with the notation used. 

Table 2. List of symbols used in the mathematical model representation 
Symbol Representation 

),( ENG =  Complete weighted digraph with N nodes and E edges 
},...,3,2,1{ +++++ = nN  Set of pickup nodes 

},...,3,2,1{ −−−−− = nN  Set of delivery nodes 
+−= NNN U  

}2...,3,2,1,0{ nN =  
Set of all nodes with node 0 representing a central depot, n is 

even 
},|),{( NjijiE ∈=  Set of edges 

mkkV ,...,1},{ ==  Set of vehicles 
τ Time at which a new request is available (realization time) 

Nc(τ) Set of critical nodes 
Nu(τ) Set of un-serviced nodes 
Nu/c(τ) Set of un-serviced or critical nodes 

r i A request for pickup at node i+ and delivery at node i- 
[ei, li] Time window for request i 

qi Demand at node i 
tijk Travel time from node i to node j using vehicle k 
cijk travel cost\distance from node i to node j using vehicle k 
si Service time at node i 
ai Arrival time at node i 
di Departure time from node i 

w1i 
waiting time before beginning the service at node i (occurs 
when the vehicle arrives before the time window begins) 

w2i 
waiting time before the vehicle leaves node i after finishing 

the service 
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Objective function 

∑∑∑
= = =

||

1 1 1

min
V

k

n

i

n

j
ijkijk xc  

Such that: 

Flow conversation constraints 

∑∑
= =

∈∀=
||

1 1
/ )(1

V

k

n

j
ucijk Nix τ                   … (9) 

∑∑
= =

∈∀=
||

1 1

)(1
V

k

n

i
uijk Njx τ                 … (10) 

VkNhxx u

n

j
hjk

n

i
ihk ∈∈∀=∑∑

==

),(
11

τ                … (11) 

0
1

0 1 Vkx
n

j
jk ∈∀≤∑

=

                 … (12) 

Time window constraints 

)(τuii Nla ∀≤                   … (13) 

Vkla k ∈∀≤ 00                       … (14) 

)(1 / τcuiiii Nswad ∀++≥                 … (15) 

VkNjNixiftda ucijkijij ∈∈∈∀=+= ),(),(1 0/ ττ               … (16) 

)(},0max{1 / τuciii Niaew ∈∀−=                … (17) 

)()1(2 / τuciiiii Niswadw ∈∀++−=                … (18) 





=
j vertex  toi vertex from drivesk   vehicleif1,

j vertex  toi vertex from drivenot  doesk   vehicleif,0
ijkx              … (19) 

 

Equation (9) requires that only one vehicle leaves a critical, or un-serviced, 

node i once. Equation (10) requires that only one vehicle arrives at un-serviced node j 

once. Equation (11) requires that for each un-serviced node h, the entering vehicle must 
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eventually leave that node. Equation (12) requires that each vehicle can leave the depot, 

at most, once. Equation (13) requires that the arrival time, at each node, should be 

before the end of its time window. Equation (14) requires that all vehicles must return 

to the depot before it closes. Equation (15) requires that departure time di must be later 

than or equal to the completion time of the service (i.e. ai + w1i + si). Equation (16) 

requires that the arrival time at a destination node must equal the departure time from 

the origin node plus the travel time between the two nodes. Equations (17) and (18) 

define the waiting times before the service (if the vehicle arrives before the time 

window begins) and after the service (if the vehicle is to wait after the service for new 

requests to appear). Finally, equation (19) states that xijk is a binary variable indicating 

whether are (i, j) is used in the solution or not. Of course, the Precedence and coupling 

constraints (i.e. the pickup must be performed before the delivery, and both must be 

done by the same vehicle) apply throughout the model. 
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Methodology 

 

3.1 Solution approach 

 As mentioned earlier, the area of application is the courier mail pickup and 

delivery problem, in which small parcels are picked up from one location and delivered 

to another location on the same working day. The solution approach is as follows: an 

initial routing plan, for each vehicle, is constructed based on the static data available 

(i.e. based on the requests known a priori to execution). This routing plan will not be 

optimal as it is generated using the Nearest Addition heuristic, the reason for not 

generating an optimal initial routing plan, is because the problem is dynamic. The 

routing plan is then improved using a hybrid algorithm based on Tabu Search, Guided 

Local Search, and Variable Neighborhood search.  

 

The initial improved solution is executed, and as new requests unfold 

throughout the day, they are inserted into some vehicle’s routing plan according to the 

Cheapest Insertion heuristic, if possible. Sometime, the time windows on dynamic 

requests are too tight to satisfy; therefore, such requests may be rejected. The cheapest 

insertion heuristic is followed by a quick local search based on the Reduced Variable 

Neighborhood Search (RVNS), for each newly arriving request; the idea is to evenly 

distribute these newly added visits among vehicles. What happens is that when the 

cheapest insertion heuristic is used, new visits arriving towards the end of the working 

day are most likely added to un-used vehicles, as it requires much less time to simply 

use such idle vehicles, than to find a feasible insertion point within the current routes of 

the used vehicles, and therefore more vehicles will be used, but will also be under 

utilized.  
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After this quick local search is done, the dispatcher can inform the customer 

whether his / her request can be accommodated for on the same day or not; however, 

requests are not dispatched to the vehicles on the road till after the re-optimization 

hybrid is run. The re-optimization hybrid algorithm is run after 10 new visits are 

inserted, and according to its output, new requests are dispatched to the vehicles. Figure 

1 illustrates the procedure.  

 

It should be noted, however, that the re-optimization algorithm is only based on 

ideas from these three metaheuristics; they are not applied in their usual context. The 

hybrid is then tested against problem sets, originally created to investigate the 

effectiveness of population based metaheuristics, not local search metaheuristics; as the 

ones used here. A brief on the heuristic and metaheuristic approaches used is explained, 

and then the hybrid approach is presented. 
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Figure 1. Solution approach 
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3.1.1 Nearest addition heuristic  

The nearest addition heuristic builds routes by adding visits closer to the end of 

the route. The algorithm goes as follows, for all vehicles:  

1. Denote the vehicle to be considered by w.  

2. Start with a partial route consisting of the departure from the depot.  

3. Find a visit v closest (cheapest to get to) to the end of the current partial 

route of w. If it is not possible to find such a visit, close the current partial 

route w, choose another empty vehicle and go to step 2.  

4. Add v to the end of the partial route.  

5. Go to step 3.  

6. If all vehicles have been used and there are still visits unperformed, new 

vehicles must be brought in; otherwise, the algorithm fails. 

 

3.1.2 Cheapest insertion heuristic 

Let c(i, k, j) be the cost of inserting node k between nodes i and j that are 

already part of the route. The cheapest insertion heuristic selects the next node to be the 

one minimizing c(i, k, j) and is not a part of the current route. The procedure is repeated 

until all nodes have been inserted. This is relatively a fast heuristic and is practical in a 

dynamic setting; when a request arrives the customer expects an immediate answer 

whether his/her request can be satisfied on the same day or not; so, the time available 

for the algorithm to find a feasible insertion point for new requests is seconds, not 

minutes. 
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3.2 Overview of the metaheuristics used 

As mentioned before in section 2.6, metaheuristics were created to escape local 

optima by filtering out proposed moves according to the metaheuristic rule (e.g. a 

greedy search metaheuristic filters out all moves which do not improve the solution). 

To do so, metaheuristics were classified into two major categories: those that start with 

and maintain only one single solution at each iteration, and those that start with 

multiple solutions (2 solutions or more), the latter is known as population based 

metaheuristics. It is difficult to say which approach is better, faster, or even has a higher 

chance of reaching an optimal solution; it actually depends on the problem being 

solved. All metaheuristics used in this work are of local search nature; these 

metaheuristics are described next.  

 

3.2.1 Tabu Search 

 In Tabu Search (TS), degrading moves are accepted during the search to avoid 

moving to places previously visited; this can be done by, of course, storing every 

solution visited and forbidding the return to any such point. However, this has a 

significant memory burden; therefore, TS uses a technique called Tabu List (Glover 

1986, 1989). The tabu list is a list of "features" of a solution that are forbidden, or 

alternatively, that must be present. Features are added and dropped from the list when a 

neighborhood move is made. In routing problems, the features are the arcs of the 

current solution, and two lists are maintained: one that dictates which arcs must not be 

part of any new solution (forbid / tabu list), and the other dictates which arcs must be 

part of any new solution (keep list). Maintaining finite lists encourages exploring 

solutions with different arcs. The length of time a feature remains on a list (The Tenure) 

is important and affects how the search avoids previous solutions, the tenure is a 
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parameter of the algorithm, and can be altered dynamically during the search process; 

which will be done in this work as part of the search algorithm.  

 

Whenever a move is examined, TS looks at the new arcs added to the solution 

and at the old arcs that left the solution, then the number of new arcs appearing on the 

forbid list and the number of old arcs that appear on the keep list are added, the 

summation is called the tabu number of the move. If the tabu number is above a certain 

value (which varies according to the move type), the move is declared tabu and 

rejected. This rejection can be overridden in one case: when the cost of this move is 

better than the best cost solution visited so far. This is known as the aspiration criterion, 

it prevents the search from being overly inhibited by the tabu list (Glover, 1990 and 

Gendreau, 2003). 

 

3.2.2 Guided Local Search 

Guided Local Search (GLS) can be seen as an alternative to TS in escaping 

local optima. As in TS, how the search can move around is restricted; GLS makes a 

series of greedy searches, each to a local minimum, but it optimizes a different cost 

function from the original. An augmented cost function is created by adding a penalty 

term to the true cost function, the penalty term is the sum of all penalties for possible 

“features” of a problem (in this case the features are the arcs of the routing problem), 

the penalty for each possible arc starts at zero and will only be increased when the local 

search reaches a local optimum (Voudouris, 2003). Given an objective function g that 

maps every candidate solution s, GLS defines the augmented function h as: 

∑+=
i

ii sIpsgsh ))(()()( λ                   … (1) 
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Where λ is a parameter to the GLS algorithm, pi is the penalty for feature (all pi values 

are initialized to 0) and I i is an indication of whether s exhibits feature i or not, that is: 





=
otherwirse

ifeaturecontainssif
I i ,0

,1
                  … (2) 

 

GLS determines which arcs to penalize based upon the cost of the arc in the 

solution and how often that arc has previously appeared at local optima. GLS tries to 

choose a bad or costly arc in the solution to penalize, as removing costly arcs should 

lead to finding better solutions in subsequent iterations. GLS penalizes an arc for which 

the utility is the highest of all arcs in the current solution, the utility of an arc under a 

local minimum s* is: 

i

i
ii n

c
sIsutil

+
×=

1
)()( **                    … (3) 

ci is the cost of arc i, ni is the number of times arc i has been penalized, thus GLS tries 

to penalize arcs with high cost. However, if an arc has been penalized a number of 

times, the importance of cost reduces, this is due to the fact that, if an arc has been 

penalized a large number of times and is still in the solution, there may be no better 

arc(s) with which to replace it and it is probably best to start looking elsewhere to place 

penalties. The penalty is equal to the cost of the arc multiplied by the penalty factor 

(specified to the metaheuristic). 

 

3.2.3 Variable Neighborhood Search 

The basic idea of Variable Neighborhood Search (VNS) is the systematic 

change of the neighborhood structure explored. The key principles of VNS are as 

follows (Mladenovic and Hansen, 1997, 1999, 2001c, 2005): 

• A local minimum with respect to one neighborhood is not necessary so for another. 
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• A global minimum is a local minimum with respect to all possible neighborhoods. 

• For many problems local minima are relatively close to each other. This principle is 

an empirical one; local optima can provide some insight about the global optima.  

 

VNS is built of two main components: Variable Neighborhood Descent (VND) 

and Reduced VNS (RVNS). VND is simply a greedy search, in which only improving 

moves are taken; this will, most likely, produce a local optimum solution which, 

according to the first principle, differs according to the neighborhood structure used. 

RVNS is concerned with how to escape a local optima (i.e. which point to move to 

once a local optima is reached), the easiest answer would be to move to a random point, 

and, according to the third principle, it would be advisable to move to a point close to 

the local optima first, then explore further points if required. The original VNS 

algorithm is as follows (Mladenovic and Hansen, 1997, 1999, 2001c, 2003): 

 

 

 

 

 

 

 

 

 

 

 

 

Initialization: 
• Select the set of neighborhood structures Nk, for k = 1, 2… kmax that will be used in the outer 

loop (known as the shaking phase in VNS), and select a set of neighborhood structures Nl 
for l = 1, 2... lmax that will be used in the inner loop (known as the local search phase in 
VNS).  

• Starting from an initial solution x. 
• Choose a stopping condition 
 

Outer loop; shacking: 
• Set k ← 1 
• Repeat the following steps until k = kmax 
• Generate a random solution from the kth neighborhood Nk(x) of the initial solution x, call this 

solution x’ 
  

Inner loop; local search 
• Set l ← 1 
• Repeat the following steps until l = l max 

• Explore the Nl(x’) neighborhood and find the best solution, call this solution x’’  
• Move or not: If x’’  is better than x’, make a move to x’’ ; otherwise, change the 

neighborhood to l = l + 1 
 

• Move or not: If x’’  is better than x, move there and continue the search with Nk; otherwise, 
set k = k + 1 

Figure 2. Original VNS algorithm 
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Clearly, the original VNS algorithm uses the randomly generated solution x’ to 

diversify the search, and uses a greedy search algorithm (best accept) to intensify the 

search (in the inner loop); in this study, the greedy local search approach is replaced 

with a metaheuristic combining both TS and GLS filtration criterion, this will allow the 

inner loop to explore each of the Nl neighborhoods more thoroughly, and reach better 

local optima. The proposed hybrid is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initialization: 
• Select the set of neighborhood structures Nk, for k = 1, 2… kmax that will be used in the outer 

loop (known as the shaking phase in VNS), and select a set of neighborhood structures Nl 
for l = 1, 2... lmax that will be used in the inner loop (known as the local search phase in 
VNS).  

• Starting from an initial solution x, which in this case, is a routing plan after new requests are 
inserted using the cheapest insertion heuristic. 

• Choose a stopping condition, which in this case, is a single pass of the hybrid done after 10 
new visits are added to the solution using the cheapest insertion heuristic 

 
Outer loop; shacking: 

• Set k ← 1 
• Repeat the following steps until k = kmax 
• Generate a random solution from the kth neighborhood Nk(x) of the initial solution x, call this 

solution x’ 
  

Inner loop; local search 
• Set l ← 1 
• Repeat the following steps until l = l max 

• Explore the Nl(x’) neighborhood using a combination of TS and GLS and find the best 
solution, call this solution x’’  

• Move or not: If x’’  is better than x’, make a move to x’’ ; otherwise, change the 
neighborhood to l = l + 1 

 
• Move or not: If x’’  is better than x, move there and continue the search with Nk; otherwise, 

set k = k + 1 

Figure 3. Proposed hybrid metaheuristic 
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3.3 Experimental procedure 

As stated in the introduction, the objectives of this study are: 

1. Creating a hybrid metaheuristic to solve the dynamic pickup and delivery 

problem with time windows; the hybrid is based on Tabu Search, Guided Local 

Search, and Variable Neighborhood Search. The hybrid will be developed using 

the ILOG CP classes under a C++ development environment. 

2. Investigating the effect of changing the neighborhood order on solution quality 

and solution speed (in the Variable Neighborhood Search context).  

3. Investigating the effect of dynamically changing search parameters on solution 

quality and solution speed (in the Tabu Search and Guided Local Search 

context). 

 

The first objective is achieved through the algorithm proposed in figure 3 

above. The second objective is achieved through classifying the neighborhoods used in 

the VNS framework into two groups: those that modify only one route which are 

known as intra-route neighborhoods (the ones used in this study are: Intra Relocate, 

Two Opt, and Or Opt), and those that make changes between routes which are known 

as inter-route neighborhoods (the ones used in this study are: Merge and Relocate 

Tours, Cross, FP Relocate, Exchange, and Relocate), exact definitions of these 

neighborhood structures are in the appendix. Table 1 below shows how the order of 

these neighborhoods is changed on each trial. 
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Table 1. Neighborhood order changes 
Outer loop; shaking Inner loop; local search 

Intra Relocate Merge And Relocate Tours 
Two-Opt Cross 
Or-Opt FP Relocate 

 Exchange 
 Relocate 

Merge And Relocate Tours Intra-Relocate 
Cross Two-Opt 

FP-Relocate Or-Opt 
Exchange  
Relocate  

Relocate Merge And Relocate Tours 
Or-Opt Intra-Relocate 

Exchange Cross 
 Two-Opt 
 FP-Relocate 

Merge And Relocate Tours Relocate 
Intra-Relocate Or-Opt 

Cross Exchange 
Two-Opt  

FP-Relocate  

 

The third objective is achieved through dynamically changing the TS and GLS 

parameters during the local search phase, the changes are as follows: 

• The total number of iterations for the local search phase is 150 per neighborhood. 

• Before the optimization loop is entered set the tenure value (for TS) to 5 and the 

penalty value (for GLS) to 0.45; meaning when the optimization loop begins the 

search, towards a local minimum, is intensified. 

• When the search reaches iteration number 70 and if there is no improvement on the 

objective function for the past 10 moves, the search is diversified by increasing the 

search parameters to 12 for the tenure and 0.8 for the penalty. 

• Just before the optimization loop ends (at iteration 120), the search parameters are 

set back to lower values; tenure = 5 and penalty = 0.45. 
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The problem will be solved once using these parameter changes, and once 

without making these changes (i.e. the parameters will be set to: tenure = 5 and penalty 

= 0.45 at the beginning of the search, and will remain constant till the optimization loop 

terminates). Table 2 below shows how objectives 2 and 3 are reached. 

Table 2. Changing search parameters and the neighborhood order 
Set Trial Parameter values Outer loop; shaking Inner loop; local search 
X tenure = 5 penalty = 0.45 Intra Relocate Merge And Relocate Tours 
X tenure = 5 penalty = 0.45 Two-Opt Cross 
X tenure = 5 penalty = 0.45 Or-Opt FP Relocate 
X tenure = 5 penalty = 0.45  Exchange 
X 

1 

tenure = 5 penalty = 0.45  Relocate 

X tenure = 5 penalty = 0.45 Merge And Relocate Tours Intra-Relocate 
X tenure = 5 penalty = 0.45 Cross Two-Opt 
X tenure = 5 penalty = 0.45 FP-Relocate Or-Opt 
X tenure = 5 penalty = 0.45 Exchange  
X 

2 

tenure = 5 penalty = 0.45 Relocate  

X tenure = 5 penalty = 0.45 Relocate Merge And Relocate Tours 
X tenure = 5 penalty = 0.45 Or-Opt Intra-Relocate 
X tenure = 5 penalty = 0.45 Exchange Cross 
X tenure = 5 penalty = 0.45  Two-Opt 
X 

3 

tenure = 5 penalty = 0.45  FP-Relocate 

X tenure = 5 penalty = 0.45 Merge And Relocate Tours Relocate 
X tenure = 5 penalty = 0.45 Intra-Relocate Or-Opt 
X tenure = 5 penalty = 0.45 Cross Exchange 
X tenure = 5 penalty = 0.45 Two-Opt  
X 

4 

tenure = 5 penalty = 0.45 FP-Relocate  

X Dynamically changing Intra Relocate Merge And Relocate Tours 
X Dynamically changing Two-Opt Cross 
X Dynamically changing Or-Opt FP Relocate 
X Dynamically changing  Exchange 
X 

5 

Dynamically changing  Relocate 

X Dynamically changing Merge And Relocate Tours Intra-Relocate 
X Dynamically changing Cross Two-Opt 
X Dynamically changing FP-Relocate Or-Opt 
X Dynamically changing Exchange  
X 

6 

Dynamically changing Relocate  

X Dynamically changing Relocate Merge And Relocate Tours 
X Dynamically changing Or-Opt Intra-Relocate 
X Dynamically changing Exchange Cross 
X Dynamically changing  Two-Opt 
X 

7 

Dynamically changing  FP-Relocate 

X Dynamically changing Merge And Relocate Tours Relocate 
X Dynamically changing Intra-Relocate Or-Opt 
X Dynamically changing Cross Exchange 
X Dynamically changing Two-Opt  
X 

8 

Dynamically changing FP-Relocate  
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To see which of the eight configurations produce the lowest traveling cost, 

problem sets, based on the work of Christofides (Christofides and Beasley, 1984), 13 

data sets; Fisher (Fisher, Jakumar and Wassenhove, 1981), 5 data sets; and Taillard 

(Taillard, 1994), 12 data sets, will be used. Meaning, a total of 30 data sets will be 

tested, each set is run eight times for different configurations of parameter values and 

neighborhood order. It is worth mentioning though that these data sets were originally 

generated for the dynamic vehicle routing problem with no time windows; therefore, 

the sets had to be modified to fit the scope of this study (i.e. time windows were added 

to all visits, and pickup and delivery pairs were created). This, in turn, will make it 

difficult to compare the results with the original data sets, but these data sets were the 

closest to the problem under study, and therefore were used. All tests will be run on a 

standard Pentium 4 PC with a CPU clock speed of 2.8 GHz, 1 GB of RAM, and Hyper 

Threading technology.  

 

After obtaining the results, a paired t-test will be used to investigate the effect of 

dynamically changing search parameters versus setting the search parameters to fixed 

values and maintaining them throughout the search; and since there are four 

neighborhood orders, the paired t-test will be conducted four times, once under each 

neighborhood order. Tables 3 and 4 below illustrate the procedure. Alpha is set to 0.05. 

Table 3. Results table template 
 Search parameters constant Search parameters dynamically changing 
 Order 1 Order 2 Order 3 Order 4 Order 1 Order 2 Order 3 Order 4 
 Trial 1 Trail 2 Trail 3 Trial 4 Trail 5 Trial 6 Trial 7 Trial 8 
Set # Obj. fun. Obj. fun. Obj. fun. Obj. fun. Obj. fun. Obj. fun. Obj. fun. Obj. fun. 
1 X111 X121 X131 X141 X112 X122 X132 X142 
2 X211 X221 X231 X241 X212 X222 X232 X242 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
30 X3011 X3021 X3031 X3041 X3012 X3022 X3032 X3042 
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Table 4. Paired t-test template 

Set # 
Order 1 

difference 
Order 2 

difference 
Order 3 

difference 
Order 4 

difference 
1 X111 - X112 X121 - X122 X131 - X132 X141 - X142 
2 X211 - X212 X221 - X222 X231 - X232 X241 - X242 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
30 X3011 - X3012 X3021 - X3022 X3031 - X3032 X3041 - X3042 
Average difference (D ) 1D  2D  3D  4D  
Difference standard 
deviation (SD) 

SD1 SD2 SD3 SD4 

Test statistic (T0) T1 T2 T3 T4 
1,2/ −ntα  t1 t2 t3 t4 

p-value p1 p2 p3 p4 
95% CI for mean 
difference 

CI1 CI2 CI3 CI4 
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RESULTS, ANALYSIS, AND DISCUSSION 

 

4.1  Validation and verification 

As mentioned in section 1.1 the solution to a vehicle routing problem with time 

windows is a routing plan (a sequence) for each vehicle specifying the locations to visit, the 

order of the visits, and the arrival and departure times for each visit (scheduling visits); the 

solution must satisfy all problem constraints. A sample solution is presented next and verified 

against problem constraints; problem set number 20, trial 6 will be used for this illustration. 

As shown in table 1 below, the objective function value, for problem set 20, is 2831.4; which 

is the total distance traveled by all vehicles. It is assumed that 1 unit of distance is equal to 1 

unit of cost, and the vehicles have no fixed cost (e.g. a rent cost). Summing the costs of all 

vehicles gives the total cost of the objective function. 

 

The route of each vehicle, starting and ending at the depot, a long with the arrival and 

departure times to and from each node, are also presented. All arrivals are within the 

specified time windows of the set. For example, vehicle1 reaches visit33 at time 46.9142, 

which is within the specified time window for that visit (0 ~ 231), waits 0 time units before 

the time window opens, does the pickup service in 10 time units, and then travels for 14.8661 

time units to reach its next destination (visit34), visit34 is the delivery pair of visit33. Visit34 

is reached at 71.7802, which is also within its time window (0 ~ 232). Hence, time window 

constraints are satisfied. In addition, both the pickup and delivery (visit33 and visit34) are 

made by the same vehicle and the pickup is made before the delivery. The same reasoning 

applies to all other visits and all other problem sets. Table 1 and figures 1 – 3 characterize 

problem set 20, validation details for vehicle 1 are in tables 2 and 3, and the remaining 

problem instances are in appendix 3.  
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Table 1. Problem characteristics for set number 20, trial 6 
Set 
# 

Static Dynamic edodtw Parameter 
values 

Shaking 
Neighborhood 

Local search 
Neighborhood 

Initial 
Solution 

Final 
Solution 

20 1 ~ 82 83 ~ 220 0.412 Dynamic 
Merge and 
Relocate 

Intra Relocate 884.273 2831.400 

20 1 ~ 82 83 ~ 220 0.412 Dynamic Cross Two-Opt   
20 1 ~ 82 83 ~ 220 0.412 Dynamic FP-Relocate Or-Opt   
20 1 ~ 82 83 ~ 220 0.412 Dynamic Exchange    
20 1 ~ 82 83 ~ 220 0.412 Dynamic Relocate    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Locations distribution 
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Figure 3. Delivery time windows – problem set 20 
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Figure 2. Pickup time windows – problem set 20 
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Table 2. Time windows for visits performed by vehicle 1 

Pickup Delivery Pickup 
Min Time 

Delivery 
Min Time 

Pickup 
Max Time 

Delivery 
Max Time 

Service 
Time 

Drop 
Time 

Available 
Time 

visit33 visit34 0 0 231 232 10 10 0 
visit55 visit56 0 0 247 293 10 10 0 
visit57 visit58 0 0 280 299 10 10 0 
visit65 visit66 0 0 254 359 10 10 0 

 
 

Table 3. Validation of the model based on problem set 20 trial 6 – vehicle 1 
Vehicle1 Total cost = 148.569 Fixed cost = 0 Cost coefficients = Distance [1] 
 
Route: depot � visit57 �  visit33 � visit34 � visit65 � visit55 � visit58 � visit66 � visit56 � depot 
 
Time: depot [0], delay [0] � travel [23.0217], wait [0] � visit57 [23.0217], delay [10] � travel [13.8924], wait 
[0] � visit33 [46.9142], delay [10] � travel [14.8661], wait [0] � visit34 [71.7802], delay [10] � travel 
[41.7732], wait [0] � visit65 [123.553], delay [10] � travel [4.47214], wait [0] � visit55 [138.026], delay [10] 
� travel [1], wait [0] � visit58 [149.026], delay [10] � travel [11.1803], wait [0] � visit66 [170.206], delay 
[10] � travel [1], wait [0] � visit56 [181.206], delay [10] � travel [37.3631], wait [0] � depot [228.569] 
Transit Sum [228.569] 
 
Distance: depot [0] delay [0] � travel [23.0217], wait [0] � visit57 [23.0217], delay [0] � travel [13.8924], 
wait [0] � visit33 [36.9142], delay [0] � travel [14.8661], wait [0] � visit34 [51.7802], delay [0] � travel 
[41.7732], wait [0] � visit65 [93.5534], delay [0] � travel [4.47214], wait [0] � visit55 [98.0256], delay [0] 
� travel [1], wait [0] � visit58 [99.0256], delay [0] � travel [11.1803], wait [0] � visit66 [110.206], delay [0] 
� travel [1], wait [0] � visit56 [111.206] delay [0] � travel [37.3631], wait [0] � depot [148.569] 
Transit Sum 148.569 
 
Vehicle2 Total cost = 192.05 Fixed cost = 0 Cost coefficients = Distance [1] 
Vehicle3 Total cost = 130.477 Fixed cost = 0 Cost coefficients: Distance [1] 
Vehicle4 Total cost = 88.3736 Fixed cost = 0 Cost coefficients: Distance [1] 
Vehicle5 Total cost = 208.919 Fixed cost = 0 Cost coefficients: Distance [1] 
Vehicle6 Total cost = 108.338 Fixed cost = 0 Cost coefficients: Distance [1] 
Vehicle7 Total cost = 93.8076 Fixed cost = 0 Cost coefficients: Distance [1] 
Vehicle8 Total cost = 167.074 Fixed cost = 0 Cost coefficients: Distance [1] 
Vehicle9 Total cost = 202.768 Fixed cost = 0 Cost coefficients: Distance [1] 
Vehicle10 Total cost = 21.6734 Fixed cost = 0 Cost coefficients: Distance [1] 
Vehicle11 Total cost = 140.275 Fixed cost = 0 Cost coefficients: Distance [1] 
Vehicle12 Total cost = 122.024 Fixed cost = 0 Cost coefficients: Distance [1] 
Vehicle13 Total cost = 202.49 Fixed cost = 0 Cost coefficients: Distance [1] 
Vehicle14 Total cost = 90.7877 Fixed cost = 0 Cost coefficients: Distance [1] 
Vehicle15 Total cost = 72.7513 Fixed cost = 0 Cost coefficients: Distance [1] 
Vehicle16 Total cost = 42.4945 Fixed cost = 0 Cost coefficients: Distance [1] 
Vehicle17 Total cost = 48.4243 Fixed cost = 0 Cost coefficients: Distance [1] 
Vehicle18 Total cost = 127.933 Fixed cost = 0 Cost coefficients: Distance [1] 
Vehicle19 Total cost = 138.792 Fixed cost = 0 Cost coefficients: Distance [1] 
Vehicle20 Total cost = 102.149 Fixed cost = 0 Cost coefficients: Distance [1] 
Vehicle21 Total cost = 111.046 Fixed cost = 0 Cost coefficients: Distance [1] 
Vehicle22 Total cost = 117.463 Fixed cost = 0 Cost coefficients: Distance [1] 
Vehicle23 Total cost = 152.724 Fixed cost = 0 Cost coefficients: Distance [1] 
Total Cost = 2831.4 Number of vehicles used = 23 Number of visits performed = 220 

 

 

A
ll 

R
ig

ht
s R

es
er

ve
d 

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n 
- C

en
te

r  
of

 T
he

si
s D

ep
os

it



www.manaraa.com

Chapter 4  Results, analysis, and discussion 58 

4.2  Analysis and discussion 

Next, the results are presented and analyzed based on objectives 2 and 3 of this study 

(i.e. investigating the effect of changing the neighborhood order on solution quality and 

solution speed, and investigating the effect of dynamically changing search parameters on 

solution quality and solution speed), this is done in sections 4.2.1 and 4.2.2. 

 

In section 4.2.3, the online algorithm is assessed using competitive analysis (discussed 

in section 2.4). This is done as follows: for every problem set 8 trials were run (as a result of 

changing neighborhood orders and search parameters), one of these 8 trials produced the 

minimum objective function value for that set; the settings at which the minimum value was 

observed, per set, are used to solve the same problem set again but assuming that all requests 

are static, and known in advance at the time of route planning. Meaning, the static version 

will have less constraints as the dynamic requests, which are now assumed to be static, can be 

inserted into any part of the routing plan with no regards to their realization time (the 

realization time is now considered to equal zero). Of course, competitive analysis is usually 

run against a static version of the problem, solved with an offline algorithm capable of 

producing an optimal solution; however, in this case, the static version of the problem is NP-

hard, there is not a known optimal solution to compare to; hence, the comparison will be 

made against the solution obtained with less constraints. Such analysis will show how the 

objective function could have been lower had all the information been available at the route 

planning phase. Finally, in section 4.2.4, some observations are made about how the degree 

of dynamism affects the percentage of rejected dynamic requests. 
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4.2.1  Analysis and discussion – objective function 

Based on the experimental procedure (section 3.3), the results, for the objective 

function, for the 30 trials are in table 4 below.  

Table 4. Results table - objective function 
Search parameters constant Search parameters dynamically changing 

Order 1 Order 2 Order 3 Order 4 Order 1 Order 2 Order 3 Order 4 
Trial 1 Trail 2 Trail 3 Trial 4 Trail 5 Trial 6 Trial 7 Trial 8 

Set 
# 

Obj. fun. Obj. fun. Obj. fun. Obj. fun. Obj. fun. Obj. fun. Obj. fun. Obj. fun. 
1 2122.20 1974.38 2063.45 2072.71 2072.71 1974.38 2028.52 2072.71 
2 1250.91 1264.39 1264.39 1201.15 1209.44 1201.25 1317.49 1280.97 
3 2212.00 2290.04 1929.91 2096.58 2226.78 2233.58 2243.45 1972.29 
4 2143.21 2284.21 2055.71 2284.21 2130.44 2284.21 2017.60 2284.21 
5 1718.17 1779.20 1588.04 1536.30 1867.43 1895.52 1722.29 1779.14 
6 2722.28 2664.65 2640.65 2751.47 2722.28 2613.88 2753.97 2572.13 
7 1539.09 1426.45 1542.54 1667.97 1533.62 1602.48 1433.39 1667.97 
8 2715.61 2656.26 2492.65 2584.55 2758.65 2683.95 2655.76 2743.94 
9 3187.74 3539.37 3419.05 3539.37 3373.77 3539.37 3446.02 3231.05 
10 2609.37 2541.69 2738.94 2542.92 2445.93 2542.47 2721.51 2488.15 
11 3361.17 3332.61 3298.90 3098.27 3311.17 3246.99 3134.84 3098.27 
12 3247.96 3297.96 3165.24 3417.71 3233.49 3385.23 3157.77 3345.68 
13 3501.75 3246.64 3370.01 3492.33 3202.48 3457.58 3443.55 3427.80 
14 3613.18 3441.99 3245.69 3227.31 3295.72 3343.48 3153.77 3333.34 
15 3939.70 3857.04 3740.19 3698.24 3774.59 3811.09 4049.45 3698.24 
16 2568.28 2471.55 2552.15 2451.48 2347.08 2127.09 2272.98 2034.83 
17 2457.93 2560.21 2365.72 2537.12 2600.02 2280.95 2217.76 2160.65 
18 3049.40 2973.01 3207.35 2985.34 3181.62 3272.90 2970.62 2905.65 
19 4026.65 3777.83 3921.51 3609.90 3812.42 3575.04 3824.77 3737.37 
20 3060.29 2732.91 3348.74 3047.68 3022.75 2831.40 3098.70 2662.99 
21 3128.74 3353.55 3450.76 3285.26 3386.31 3287.07 3428.97 3385.63 
22 4523.01 4624.70 4154.66 4267.13 4548.13 4728.46 4568.10 4528.85 
23 3537.66 3754.80 3788.04 3614.36 3604.43 3641.76 3459.53 3690.06 
24 2854.61 2842.98 2896.05 2960.21 2939.76 2875.42 3060.34 2828.84 
25 3167.00 3051.52 3033.59 3082.85 3084.74 2884.95 3105.17 3106.50 
26 2134.21 2193.18 2193.18 2355.91 2739.79 2473.87 2226.52 2598.65 
27 3136.89 3342.57 3052.60 3038.17 3105.16 2987.35 3006.17 2992.03 
28 3925.67 4900.93 3932.88 4103.12 4167.33 4028.29 4253.63 4047.09 
29 4176.09 4133.42 4183.21 4205.75 4236.64 4236.64 4262.76 4115.77 
30 4763.65 4601.22 4963.99 4702.63 4914.05 4903.35 4844.16 4723.93 

 

Before using the paired t-test, two issues should be checked; the probability 

distribution of the differences (which must be normal), and the correlation between the pairs 

(this is not a necessary condition, but if a high correlation exists, it justifies using the paired t-

test to obtain accurate results even though n–1 degrees of freedom will be lost). Starting with 
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the normality test, a normal probability plot for each of the four differences is created, and the 

Anderson-Darling test is used with an Alpha of 0.01. See figures 4 – 7. 
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Figure 4. Normal probability plot of differences – order 1 
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Clearly some outliers exist, but most of the data seem to follow a normal distribution, 

and all the p-values for the Anderson-Darling test are greater than 0.01, which means there is 

not enough evidence to reject the null hypothesis of the data being normal. As for the 

correlation between pairs, the correlation coefficient for each of the order configuration is 

calculated (i.e. a total of four correlation coefficients).  

Pearson correlation of Trial 1 and Trail 5 = 0.977, P-Value = 0.000 

Pearson correlation of Trail 2 and Trial 6 = 0.967, P-Value = 0.000 
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Figure 6. Normal probability plot of differences – order 3 
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Figure 7. Normal probability plot of differences – order 4 
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Pearson correlation of Trail 3 and Trial 7 = 0.979, P-Value = 0.000 

Pearson correlation of Trial 4 and Trial 8 = 0.978, P-Value = 0.000 

The strong correlation necessitates the use of the paired t-test. Results for the tests are in table 

5, and box plots are in figures 8 – 11. 

Table 5. Paired t-test table, Alpha = 0.05 

Set # 
Order 1 

difference 
Order 2 

difference 
Order 3 

difference 
Order 4 

difference 
1 49.49 0.00 34.93 0.00 
2 41.47 63.14 -53.10 -79.82 
3 -14.78 56.46 -313.54 124.29 
4 12.77 0.00 38.11 0.00 
5 -149.26 -116.32 -134.25 -242.84 
6 0.00 50.77 -113.32 179.34 
7 5.47 -176.03 109.15 0.00 
8 -43.04 -27.69 -163.11 -159.39 
9 -186.03 0.00 -26.97 308.32 
10 163.44 -0.78 17.43 54.77 
11 50.00 85.62 164.06 0.00 
12 14.47 -87.27 7.47 72.03 
13 299.27 -210.94 -73.54 64.53 
14 317.46 98.51 91.92 -106.03 
15 165.11 45.95 -309.26 0.00 
16 221.20 344.46 279.17 416.65 
17 -142.09 279.26 147.96 376.47 
18 -132.22 -299.89 236.73 79.69 
19 214.23 202.79 96.74 -127.47 
20 37.54 -98.49 250.04 384.69 
21 -257.57 66.48 21.79 -100.37 
22 -25.12 -103.76 -413.44 -261.72 
23 -66.77 113.04 328.51 -75.70 
24 -85.15 -32.44 -164.29 131.37 
25 82.26 166.57 -71.58 -23.65 
26 -605.58 -280.69 -33.34 -242.74 
27 31.73 355.22 46.43 46.14 
28 -241.66 872.64 -320.75 56.03 
29 -60.55 -103.22 -79.55 89.98 
30 -150.40 -302.13 119.83 -21.30 

Average difference (D ) -15.1 32.0 -9.3 31.4 
Difference standard 
deviation (SD) 

183.4 231.8 183.3 175.0 

Test statistic (T0) -0.45 0.76 -0.28 0.98 
1,2/ −ntα  2.045 2.045 2.045 2.045 

p-value 0.654 0.455 0.782 0.333 
95% CI for mean 
difference 

(-83, 53) (-54, 118) (-77, 59) (-33, 96) 

A
ll 

R
ig

ht
s R

es
er

ve
d 

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n 
- C

en
te

r  
of

 T
he

si
s D

ep
os

it



www.manaraa.com

Chapter 4  Results, analysis, and discussion 63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Box plot for neighborhood order 1. Alpha = 0.05 
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Figure 9. Box plot for neighborhood order 2. Alpha = 0.05 

Figure 10. Box plot for neighborhood order 3. Alpha = 0.05 
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The p-values for all neighborhood orders suggest that there is not enough evidence to 

reject the null hypothesis of the difference being zero; hence, the results favor the conclusion 

that the objective function will not improve when the search parameters are dynamically 

changed, at least in the manner described here, for all four neighborhood orders. However, 

looking closer at how the dynamic change affects the objective function values for larger 

problem instances (150 nodes and more), it can be seen that the lowest objective function 

values occur when search parameters dynamically change; to be more precise, out of 20 

problem sets (problem sets 10 through 30), 15 of them had the lowest values when the search 

parameters were dynamically changing. See table 6 and figure 12. Minimum values are 

highlighted. 

Table 6. Minimum objective function values 
Fixed parameters Changing parameters 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 
Set 
# 

Obj. fun. Obj. fun. Obj. fun. Obj. fun. Obj. fun. Obj. fun. Obj. fun. Obj. fun. 
1 2122.20 1974.38 2063.45 2072.71 2072.71 1974.38 2028.52 2072.71 
2 1250.91 1264.39 1264.39 1201.15 1209.44 1201.25 1317.49 1280.97 
3 2212.00 2290.04 1929.91 2096.58 2226.78 2233.58 2243.45 1972.29 
4 2143.21 2284.21 2055.71 2284.21 2130.44 2284.21 2017.60 2284.21 
5 1718.17 1779.20 1588.04 1536.30 1867.43 1895.52 1722.29 1779.14 
6 2722.28 2664.65 2640.65 2751.47 2722.28 2613.88 2753.97 2572.13 
7 1539.09 1426.45 1542.54 1667.97 1533.62 1602.48 1433.39 1667.97 
8 2715.61 2656.26 2492.65 2584.55 2758.65 2683.95 2655.76 2743.94 
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DifferencesFigure 11. Box plot for neighborhood order 3. Alpha = 0.05 
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9 3187.74 3539.37 3419.05 3539.37 3373.77 3539.37 3446.02 3231.05 
10 2609.37 2541.69 2738.94 2542.92 2445.93 2542.47 2721.51 2488.15 
11 3361.17 3332.61 3298.90 3098.27 3311.17 3246.99 3134.84 3098.27 
12 3247.96 3297.96 3165.24 3417.71 3233.49 3385.23 3157.77 3345.68 
13 3501.75 3246.64 3370.01 3492.33 3202.48 3457.58 3443.55 3427.80 
14 3613.18 3441.99 3245.69 3227.31 3295.72 3343.48 3153.77 3333.34 
15 3939.70 3857.04 3740.19 3698.24 3774.59 3811.09 4049.45 3698.24 
16 2568.28 2471.55 2552.15 2451.48 2347.08 2127.09 2272.98 2034.83 
17 2457.93 2560.21 2365.72 2537.12 2600.02 2280.95 2217.76 2160.65 
18 3049.40 2973.01 3207.35 2985.34 3181.62 3272.90 2970.62 2905.65 
19 4026.65 3777.83 3921.51 3609.90 3812.42 3575.04 3824.77 3737.37 
20 3060.29 2732.91 3348.74 3047.68 3022.75 2831.40 3098.70 2662.99 
21 3128.74 3353.55 3450.76 3285.26 3386.31 3287.07 3428.97 3385.63 
22 4523.01 4624.70 4154.66 4267.13 4548.13 4728.46 4568.10 4528.85 
23 3537.66 3754.80 3788.04 3614.36 3604.43 3641.76 3459.53 3690.06 
24 2854.61 2842.98 2896.05 2960.21 2939.76 2875.42 3060.34 2828.84 
25 3167.00 3051.52 3033.59 3082.85 3084.74 2884.95 3105.17 3106.50 
26 2134.21 2193.18 2193.18 2355.91 2739.79 2473.87 2226.52 2598.65 
27 3136.89 3342.57 3052.60 3038.17 3105.16 2987.35 3006.17 2992.03 
28 3925.67 4900.93 3932.88 4103.12 4167.33 4028.29 4253.63 4047.09 
29 4176.09 4133.42 4183.21 4205.75 4236.64 4236.64 4262.76 4115.77 
30 4763.65 4601.22 4963.99 4702.63 4914.05 4903.35 4844.16 4723.93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. Effect of dynamically changing search parameters – neighborhood order 4 
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4.2.2  Analysis and discussion – running time 

Using the paired t-test, to investigate the effect of dynamically changing search 

parameters, on the running time, will not be appropriate. As mentioned before, the normality 

assumption is crucial to conducting the paired t-test; however, in the running time case, the 

probability distribution of the differences is far from the normal distribution. Data 

transformation methods were considered, but, again, they were inappropriate. Box-Cox 

transformation simply did not work, as some of the data (differences) were negative; on the 

other hand, the Johnson transformation was capable of producing transformed normal data, 

but the transformation function was very complicated and difficult to interpret. Below is an 

example of the Johnson transformation made to the differences between trials 2 and 6 of the 

running time data, clearly, in figure 13, the transformation did produce normal data, but the 

transformation function is too complicated. The same thing applies for the remaining 

difference data.  
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In light of the difficulty to use the paired t-test, some other small observations were 

made instead. It can be seen in table 7 that the lowest running times occurred mostly in trials 

2 and 6 (27 times out 30), which both have the same neighborhood order (Shaking 

Neighborhoods: Merge And Relocate, Cross, FP-Relocate, Exchange, Relocate. Local search 

Neighborhoods: Intra-Relocate Tours, Two-Opt, Or-Opt). This could indicate that the 

neighborhood order used in trials 2 and 6 produces the lowest running time for the algorithm. 

Table 7. Results table – running time (min) 
Fixed parameters Changing parameters 

Order 1 Order 2 Order 3 Order 4 Order 1 Order 2 Order 3 Order 4 
Trial 1 Trail 2 Trail 3 Trial 4 Trail 5 Trial 6 Trial 7 Trial 8 

Set 
# 

Time Time Time Time Time Time Time Time 
1 0.538 0.297 1.804 0.692 0.663 0.292 1.779 0.671 
2 1.901 0.710 1.725 1.745 1.763 0.658 1.940 1.298 
3 1.466 1.136 3.373 1.734 1.419 0.925 2.416 1.446 
4 0.361 0.186 0.354 0.257 0.359 0.208 0.559 0.245 
5 2.452 0.488 2.743 1.113 3.199 0.589 1.878 0.906 
6 1.056 0.491 2.073 0.840 1.202 0.640 2.560 1.058 
7 0.653 0.348 0.790 0.335 0.535 0.356 0.852 0.313 
8 0.682 0.411 0.874 0.488 0.700 0.458 0.931 0.564 
9 0.550 0.280 0.878 0.452 0.356 0.276 0.738 0.347 
10 2.065 0.846 1.104 1.106 1.108 1.111 1.110 1.106 
11 1.401 0.923 1.669 0.892 1.299 0.745 1.427 0.889 
12 5.861 2.943 11.501 2.467 10.409 3.164 6.604 3.910 
13 5.829 2.531 12.364 2.983 9.001 2.807 6.624 3.927 
14 10.760 2.735 9.699 2.673 7.183 1.991 9.380 2.545 
15 5.264 2.083 4.755 2.738 5.096 1.820 5.190 2.282 
16 18.727 2.699 8.913 4.831 14.909 3.508 8.549 7.013 
17 13.766 2.373 7.390 3.739 15.075 3.439 8.430 3.285 
18 19.680 3.720 30.103 5.410 13.316 3.994 15.479 4.976 
19 7.007 2.774 7.001 4.639 5.388 2.657 5.924 2.751 
20 9.471 1.792 6.268 2.649 5.325 1.353 5.910 1.459 
21 9.231 1.348 6.326 2.582 5.417 1.194 5.396 1.466 
22 4.112 0.917 3.878 1.143 3.360 1.439 6.360 1.384 
23 1.843 0.814 1.344 0.853 1.423 0.900 132.656 0.791 
24 16.724 1.964 28.884 2.673 20.327 1.960 29.347 3.830 
25 17.179 2.079 28.988 3.845 20.299 1.956 29.271 3.789 
26 96.893 133.130 130.224 12.280 62.590 9.174 99.228 11.805 
27 35.945 1.105 48.368 3.620 22.294 2.838 33.576 3.522 
28 79.156 3.232 67.332 7.770 21.266 1.686 18.631 3.314 
29 17.404 2.730 13.265 3.296 3.441 1.899 13.048 4.827 
30 3.761 1.454 4.284 2.379 3.669 1.379 4.550 2.195 
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4.2.3  Analysis and discussion – competitive analysis 

Solving the same problem sets again, under static conditions, produced the results in 

table 8 (page 66). The following is noted: 

• Dynamic problem instances, were some visits could not be inserted (likes of: set 9, 

13, 15, 17…), may have confusing competitive analysis ratios; for example, problem 

set 28 had 17 unperformed visits with a total cost of 3925.67; however, the static 

version of the same set had only 2 unperformed visits with a total cost of 4011.990, 

this contradicts what is expected (i.e. a static version of a problem should have a 

lower cost, as there are less constraints), but given the fact that the dynamic problem 

was not solved completely (17 unperformed visits), the added extra cost, of the static 

problem, is attributed to the increased number of satisfied requests (only 2 visits were 

unperformed). 

• Given the first remark, the competitive ratio is interpreted, here, as the portion of the 

static (lower) solution that the online algorithm can achieve. For example, in problem 

set 8, the online algorithm can reach 0.76 of the static (lower) solution; meaning, had 

all the requests been known in advance, the routing plan for problem set 8 would have 

cost 1891.13 units, instead of 2492.65 (i.e. a total of 601.52 in savings). 

• The last column in table 7 shows the value of knowing all relevant information before 

hand (i.e. how much savings could have been gained). 
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Table 8. Competitive analysis ratios 

*  Static problem could not be solved 

 

4.2.4  Analysis and discussion – rejected visits 

Newly arriving requests with wide time windows are easily satisfied compared to 

requests with tight time windows. The edodtw, discussed in section 2.5.1, is one measure to 

assess the hardness of the problem based on the time windows of the newly arriving requests. 

Most of the data sets used were intentionally modified by changing their edodtw. For example, 

in table 9 and figures 14 ~ 17 (pages 68 and 69), problem sets 10 and 11 are exactly the same, 

except that problem set 11 has tighter time windows for its dynamic requests; hence, it is 

Dynamic Static 
Set # 

Solution Vehicles 
Unperformed 

visits 
Solution Vehicles 

Unperformed 
visits 

Comp. 
ratio 

Gain 

1 1974.38 14 0 1209.01 7 0 0.61 765.37 
2 1201.15 10 0 1146.18 10 0 0.95 54.97 
3 1929.91 11 0 1337.12 8 0 0.69 592.79 
4 2017.6 18 0 1275.06 8 0 0.63 742.54 
5 1536.3 13 0 1398.69 11 0 0.91 137.61 
6 2572.13 17 0 2095.12 11 0 0.81 477.01 
7 1426.45 17 0 1040.04 11 0 0.73 386.41 
8 2492.65 16 0 1891.13 11 0 0.76 601.52 
9 3187.74 26 1 2259.34 13 0 0.71 928.40 
10 2541.69 17 0 1887.78 11 0 0.74 653.91 
11 3098.27 27 0 2185.670 16 0 0.71 912.60 
12 3157.77 21 0 2326.610 16 0 0.74 831.16 
13 3202.48 30 4 2625.870 15 0 0.82 576.61 
14 3153.77 16 0 2378.250 15 0 0.75 775.52 
15 3698.24 30 13 2830.180 18 0 0.77 868.06 
16 2034.83 17 0 1760.360 16 0 0.87 274.47 
17 2160.65 30 10 1992.700 17 1 0.92 167.95 
18 2905.65 18 0 2351.890 17 0 0.81 553.76 
19 3575.04 27 0 2949.680 21 0 0.83 625.36 
20 2662.99 22 0 2111.570 16 0 0.79 551.42 
21 3128.74 30 6 2624.330 17 2 0.84 504.41 
22 4154.66 30 10 3075.630 19 0 0.74 1079.03 
23 3459.53 30 9 3076.910 23 10 0.89 382.62 
24 2828.84 27 0 2112.080 19 3 0.75 716.76 
25 2884.95 30 2 2277.680 17 0 0.79 607.27 
26 2134.21 22 0 1811.300 14 0 0.85 322.91 
27 2987.35 28 0 2117.390 15 2 0.71 869.96 
28 3925.67 30 17 4011.990 23 2 1.02 -86.32 
29* 4115.77 27 0 NA NA NA NA NA 
30 4601.22 30 0 3406.750 24 24 0.74 1194.47 
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expected to have a higher objective function value and a higher number of rejected dynamic 

requests. Same thing applies to many other sets. Figures 18 ~ 21 (pages 70 and 71) show how 

various problem sets with high edodtw have a higher percentage of rejected requests 

(percentage rejected requests out of the dynamic requests). 

Table 9. Problem sets with different edodtw 
Set # Static Dynamic edodtw Type 

1 1 ~ 20 21 ~ 58 0.52 NA 
2 1 ~ 50 51 ~ 68 0.17 NA 
3 1 ~ 30 31 ~ 88 0.46 NA 
4 1 ~ 18 19 ~ 96 0.61 NA 
5 1 ~ 60 61 ~ 98 0.26 NA 
6 1 ~ 46 47 ~ 104 0.45 NA 
7 1 ~ 12 13 ~ 110 0.70 NA 
8 1 ~ 32 33 ~ 130 0.52 easy 
9 1 ~ 32 33 ~ 130 0.62 hard 
10 1 ~ 16 17 ~ 154 0.58 easy 
11 1 ~ 16 17 ~ 154 0.69 hard 
12 1 ~ 48 49 ~ 166 0.51 easy 
13 1 ~ 48 49 ~ 166 0.60 hard 
14 1 ~ 40 40 ~ 178 0.48 easy 
15 1 ~ 40 40 ~ 178 0.63 hard 
16 1 ~ 58 59 ~ 196 0.46 easy 
17 1 ~ 58 59 ~ 196 0.60 hard 
18 1 ~ 70 71 ~ 208 0.40 easy 
19 1 ~ 70 71 ~ 208 0.53 hard 
20 1 ~ 82 83 ~ 220 0.41 easy 
21 1 ~ 82 83 ~ 220 0.54 hard 
22 1 ~ 66 67 ~ 244 0.51 easy 
23 1 ~ 26 27 ~ 244 0.70 hard 
24 1 ~ 150 151 ~ 268 0.32 easy 
25 1 ~ 150 151 ~ 268 0.36 hard 
26 1 ~ 140 141 ~ 298 0.26 easy 
27 1 ~ 140 141 ~ 298 0.29 hard 
28 1 ~ 180 181 ~ 308 0.30 NA 
29 1 ~ 50 51 ~ 308 0.55 NA 
30 1 ~ 22 23 ~ 320 0.68 NA 
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Figure 14. Pickup time windows - problem set 10 
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Figure 15. Pickup time windows - problem set 11 
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Figure 16. Delivery time windows - problem set 10 
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Figure 17. Delivery time windows - problem set 11 
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Figure 18. Effect of the degree of dynamism on the percentage of rejected requests – 
problem sets 8 (low edodtw) and 9 (high edodtw) 
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Figure 19. Effect of the degree of dynamism on the percentage of rejected requests – 
problem sets 12 (low edodtw) and 13 (high edodtw) 
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Figure 20. Effect of the degree of dynamism on the percentage of rejected requests – 
problem sets 16 (low edodtw) and 17 (high edodtw) 
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Figure 21. Effect of the degree of dynamism on the percentage of rejected requests – 
problem sets 24 (low edodtw) and 25 (high edodtw) 
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CONCLUSION AND RECOMMENDATIONS 

 

5.1  Conclusion 

The General Pickup and Delivery Problem with Time Windows has many variants, all 

of which are classified as NP-hard problems; which means, there is no known polynomial 

time algorithm capable of producing an optimal solution, at least for large problem instances. 

As such, heuristic and metaheuristic methods are usually applied to gain near optimal 

solutions in reasonable running times. In this study, an online hybrid metaheuristic based on 

Variable Neighborhood Search, Tabu Search, and Guided Local Search was created and 

tested on one variant of the general model (i.e. the Dynamic Pickup and Delivery Problem 

with Time Windows). 

 

Two major issues were addressed for the online hybrid; the effect of dynamically 

changing a metaheuristic’s search parameters, during the search, on solution quality and 

algorithm running time, and the effect of changing a metaheuristic’s neighborhood order on 

solution quality and algorithm running time. The algorithm was tested against problem 

instances based on the works of Christofides, 13 data sets; Fisher, 5 data sets; and Taillard, 12 

data sets; however, these sets were modified to include time windows to fit this study.  

 

It was found that, for large problem instances, dynamically changing search 

parameters (starting with Tenure = 5 and Penalty = 0.45, then diversifying the search, when 

no improving moves are found for the past 10 iterations, to Tenure = 12 and Penalty = 0.8, 

and finally, intensifying the search again by using the original parameter values) produced 

better solutions more often, although there was no statistical evidence to support this. 

However, dynamically changing the search parameters did not have any obvious effect on the 
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algorithm’s running time. In addition, the neighborhood order did not seem to have an effect 

on the solution quality, but the running time was obviously lower for a specific neighborhood 

order, compared to all other orders. It was found that arranging the neighborhoods in this 

manner: Shaking Neighborhoods: Merge And Relocate, Cross, FP-Relocate, Exchange, 

Relocate; Local search Neighborhoods: Intra-Relocate Tours, Two-Opt, Or-Opt, produced 

lower running times for most problem instances (27 times out of 30). This conclusion could 

not be supported by statistical tests, as the data required some sort of transformation that are 

too complicated and will make any kind of conclusions very difficult to interpret.  

 

Furthermore, the online algorithm was assessed based on the competitive analysis 

concept; although exact adherence to the concept was not possible, due to the nature of the 

selected problem (i.e. it being NP-hard and no optimal solution is known for the static 

versions of the problem instances used). All problem instances were solved again under static 

conditions (i.e. all visits were assumed to be known at the route planning time, and no new 

visits appeared), this provided benchmark solutions to which the online algorithm can be 

compared to; meaning, the static solutions are the best possible solutions that the online 

algorithm can achieve. It was found that, the online algorithm was capable of reaching any 

where between 0.61 and 0.95 of the solution obtained by its offline algorithm counterpart 

(static solution). This is a good indication of how well the developed algorithm can perform 

under dynamic conditions. 

 

Other conclusions, although not of primary interest to this work, were made from the 

results; it was shown that, for almost all problem instances, increasing the degree of 

dynamism increased the number of rejected dynamic requests. This, of course, is expected, 

but the way the problem sets were chosen made it difficult to present irrefutable evidence of 
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this notion; still, such evidence can be easily obtained with the appropriate selection of 

problem sets. 

 

5.2  Recommendations and future work 

Based on the above, the following recommendations should be considered when 

solving the dynamic pickup and delivery problem with time windows: 

• Dynamically changing search parameters, during the search, has a higher chance of 

producing better solutions for larger problem instances (150 nodes and more). 

• When using Variable Neighborhood Search to solve the problem, this neighborhood 

order has a higher chance of producing lower running times compared to other orders; 

Shaking Neighborhoods: Merge And Relocate, Cross, FP-Relocate, Exchange, 

Relocate; Local search Neighborhoods: Intra-Relocate Tours, Two-Opt, Or-Opt. 

• Integrating Tabu Search and Guided Local Search into the Variable Neighborhood 

Search framework does produce higher quality solutions in shorter times. 

 

With all the work that has been done, there are still a lot of issues that require further 

research, and future extensions can be built on this work. Further research is required in the 

following areas: 

• Using a better methodology to select, and dynamically change, search parameters, 

likes of adaptive search and racing algorithms. 

• Setting the running time of the online algorithm to a limit that suits the problem 

instance solved; meaning, instead of having the online algorithm run for a fixed time 

limit (maximum of 15 minutes in this study), the running time should be set such that 

the number of idle vehicles on the road is minimum. 
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• The number of dynamic requests that are accepted before running the online 

algorithm was set, in this study, to 10; however, a better approach is to allow it to 

change such that the number of accepted requests is maximum, while at the same time 

preserving some excess capacity for the vehicles to accept other requests that may 

appear in the near future. 

• Using the wait first strategy, instead of the drive first strategy, if it proves to produce 

shorter routes using the same number of vehicles. 

 

As for future extensions, the following can be added to this work: 

• Combining Variable Neighborhood Search with other heuristics that can further 

enhance its diversification schemes, iterated local search would be a good option to 

explore. 

• Creating a better measure of degree of dynamism to include the dependency of the 

pickup and delivery pair. 

• Applying the same algorithm to a stochastic version of the problem, this will give a 

better indication of how well it can be applied to a more realistic situation. 
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Appendix 1 – Neighborhood Structures Definition 

 

Intra-route neighborhoods: 

• Intra-Relocate: This neighborhood modifies the solution by relocating individual 

visits to a new position in the same route. This neighborhood is similar to Relocate, 

except that it relocates visits to a new position in the same route. Since it explores 

fewer options for the relocated visit, this neighborhood is potentially smaller than 

one created by Relocate. 

• Two-Opt: This neighborhood modifies the solution by breaking two arcs and starts 

looking for new neighbors at the place where the last modification took place, in 

specific the steps are: 

1. Take an initial route. 

2. Remove two arcs from the route, and try the other possible reconnection of 

the remaining parts of the route. 

3. If the cost has been reduced and if all constraints are satisfied, go back to 

Step 2. 

4. End.  

Example: in the below figure the neighborhood eliminates the crossing by 

destroying two arcs and creating two new arcs, the resulting route is shorter. With 

this neighborhood, directional flows between visits may be reversed. However, the 

presence of tight time constraints can therefore decrease its effectiveness. 
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• Or-Opt: This neighborhood modifies the solution by relocating segments of visits in 

the same route. In specific the steps are: 

1. Start with an initial route. 

2. Move parts composed of one visit elsewhere in the route.  

3. If the cost has been reduced and if all constraints are satisfied, go back to Step 

2.  

4. When all such moves have been tested, try moving parts of the route composed 

of two consecutive visits.  

5. After testing all moves of parts composed of two consecutive visits, try moving 

parts of the route composed of three consecutive visits. 

Example: in the following figure the neighborhood eliminates the crossing by 

destroying three arcs and creating three new arcs, the resulting route is shorter. 

 

 

 

 

Figure 1. Two-Opt neighborhood 
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Inter-route neighborhoods: 

• Cross: in a cross neighborhood the ends of two routes are exchanged: the first part 

of route A is connected to the last part (end) of route B and the first part of route B 

is connected to the last part (end) of route A.  

Example: in the following figure the neighborhood eliminates the crossing by 

destroying two arcs and creating two new arcs, the resulting routes are shorter.  

 

 

 

  

 

 

 

 

 

Figure 2. Or-Opt neighborhood 

  
 

 

 
 

 

  
 

 

 
 

 

 

Figure 3. Cross neighborhood 
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• Exchange: in an exchange neighborhood, two visits of two different routes swap 

places if all constraints are still satisfied. This method can be generalized if more 

than one visit of a route is exchanged at the same time. When a pair of visits is 

exchanged, this neighborhood is useful for optimizing problems such as the Pickup-

and-Delivery Problem. 

Example: in the following figure the neighborhood eliminates the crossings by 

destroying four arcs and creating four new arcs, the resulting routes are shorter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

Figure 4. Exchange neighborhood 

A
ll 

R
ig

ht
s R

es
er

ve
d 

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n 
- C

en
te

r  
of

 T
he

si
s D

ep
os

it



www.manaraa.com

Neighborhood structures definition  
  

87 

Appendix 2 – Data Sets and Results Summary 

Table 1. Summary of problem instances 
Set # Static Dynamic Total edodtw 

1 1 ~ 20 21 ~ 58 58 0.52 
2 1 ~ 50 51 ~ 68 68 0.17 
3 1 ~ 30 31 ~ 88 88 0.46 
4 1 ~ 18 19 ~ 96 96 0.61 
5 1 ~ 60 61 ~ 98 98 0.26 
6 1 ~ 46 47 ~ 104 104 0.45 
7 1 ~ 12 13 ~ 110 110 0.70 
8 1 ~ 32 33 ~ 130 130 0.52 
9 1 ~ 32 33 ~ 130 130 0.62 
10 1 ~ 16 17 ~ 154 154 0.58 
11 1 ~ 16 17 ~ 154 154 0.69 
12 1 ~ 48 49 ~ 166 166 0.51 
13 1 ~ 48 49 ~ 166 166 0.60 
14 1 ~ 40 40 ~ 178 178 0.48 
15 1 ~ 40 40 ~ 178 178 0.63 
16 1 ~ 58 59 ~ 196 196 0.46 
17 1 ~ 58 59 ~ 196 196 0.60 
18 1 ~ 70 71 ~ 208 208 0.40 
19 1 ~ 70 71 ~ 208 208 0.53 
20 1 ~ 82 83 ~ 220 220 0.41 
21 1 ~ 82 83 ~ 220 220 0.54 
22 1 ~ 66 67 ~ 244 244 0.51 
23 1 ~ 26 27 ~ 244 244 0.70 
24 1 ~ 150 151 ~ 268 268 0.32 
25 1 ~ 150 151 ~ 268 268 0.36 
26 1 ~ 140 141 ~ 298 298 0.26 
27 1 ~ 140 141 ~ 298 298 0.29 
28 1 ~ 180 181 ~ 308 308 0.30 
29 1 ~ 50 51 ~ 308 308 0.55 
30 1 ~ 22 23 ~ 320 320 0.68 
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Table 2. Results summary 

Set # Trial # 
Initial 

Solution 
Final 

Solution 
Vehicles 

Max CPU 
Time (min) 

Unperformed 
visits 

1 520.340 2122.200 15 0.538 0 
2 520.340 1974.380 14 0.297 0 
3 520.340 2063.450 15 1.804 0 
4 520.340 2072.710 16 0.692 0 
5 520.340 2072.710 16 0.663 0 
6 520.340 1974.380 14 0.292 0 
7 520.340 2028.520 14 1.779 0 

1 

8 520.340 2072.710 16 0.671 0 
1 1291.750 1250.910 11 1.901 0 
2 1291.750 1264.390 11 0.710 0 
3 1291.750 1264.390 11 1.725 0 
4 1291.750 1201.150 10 1.745 0 
5 1291.750 1209.440 10 1.763 0 
6 1291.750 1201.250 10 0.658 0 
7 1291.750 1317.490 13 1.940 0 

2 

8 1291.750 1280.970 12 1.298 0 
1 626.248 2212.000 16 1.466 0 
2 626.248 2290.040 17 1.136 0 
3 626.248 1929.910 11 3.373 0 
4 626.248 2096.580 15 1.734 0 
5 626.248 2226.780 16 1.419 0 
6 626.248 2233.580 16 0.925 0 
7 626.248 2243.450 16 2.416 0 

3 

8 626.248 1972.290 13 1.446 0 
1 380.253 2143.210 19 0.361 0 
2 380.253 2284.210 23 0.186 0 
3 380.253 2055.710 19 0.354 0 
4 380.253 2284.210 23 0.257 0 
5 380.253 2130.440 19 0.359 0 
6 380.253 2284.210 23 0.208 0 
7 380.253 2017.600 18 0.559 0 

4 

8 380.253 2284.210 23 0.245 0 
1 1300.440 1718.170 15 2.452 0 
2 1300.440 1779.200 17 0.488 0 
3 1300.440 1588.040 14 2.743 0 
4 1300.440 1536.300 13 1.113 0 
5 1300.440 1867.430 19 3.199 0 
6 1300.440 1895.520 20 0.589 0 
7 1300.440 1722.290 16 1.878 0 

5 

8 1300.440 1779.140 17 0.906 0 
1 1075.210 2722.280 19 1.056 0 
2 1075.210 2664.650 19 0.491 0 
3 1075.210 2640.650 17 2.073 0 
4 1075.210 2751.470 19 0.840 0 
5 1075.210 2722.280 19 1.202 0 
6 1075.210 2613.880 17 0.640 0 

6 

7 1075.210 2753.970 19 2.560 0 
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8 1075.210 2572.130 17 1.058 0 
1 318.032 1539.090 21 0.653 0 
2 318.032 1426.450 17 0.348 0 
3 318.032 1542.540 23 0.790 0 
4 318.032 1667.970 20 0.335 0 
5 318.032 1533.620 19 0.535 0 
6 318.032 1602.480 23 0.356 0 
7 318.032 1433.390 20 0.852 0 

7 

8 318.032 1667.970 20 0.313 0 
1 741.325 2715.610 18 0.682 0 
2 741.325 2656.260 20 0.411 0 
3 741.325 2492.650 17 0.874 0 
4 741.325 2584.550 19 0.488 0 
5 741.325 2758.650 17 0.700 0 
6 741.325 2683.950 20 0.458 0 
7 741.325 2655.760 16 0.931 0 

8 

8 741.325 2743.940 21 0.564 0 
1 741.325 3187.740 26 0.550 1 
2 741.325 3539.370 29 0.280 1 
3 741.325 3419.050 30 0.878 3 
4 741.325 3539.370 29 0.452 1 
5 741.325 3373.770 30 0.356 2 
6 741.325 3539.370 29 0.276 1 
7 741.325 3446.020 30 0.738 3 

9 

8 741.325 3231.050 30 0.347 4 
1 373.718 2609.370 17 2.065 0 
2 373.718 2541.690 17 0.846 0 
3 373.718 2738.940 20 1.104 0 
4 373.718 2542.920 16 1.106 0 
5 373.718 2445.930 15 1.108 0 
6 373.718 2542.470 17 1.111 0 
7 373.718 2721.510 20 1.110 0 

10 

8 373.718 2488.150 15 1.106 0 
1 373.718 3361.170 29 1.401 0 
2 373.718 3332.610 28 0.923 0 
3 373.718 3298.900 30 1.669 1 
4 373.718 3098.270 28 0.892 0 
5 373.718 3311.170 29 1.299 0 
6 373.718 3246.990 27 0.745 0 
7 373.718 3134.840 29 1.427 0 

11 

8 373.718 3098.270 28 0.889 0 
1 907.221 3247.960 21 5.861 0 
2 907.221 3297.960 24 2.943 0 
3 907.221 3165.240 22 11.501 0 
4 907.221 3417.710 23 2.467 0 
5 907.221 3233.490 22 10.409 0 
6 907.221 3385.230 23 3.164 0 
7 907.221 3157.770 26 6.604 0 

12 

8 907.221 3345.680 25 3.910 0 
13 1 907.221 3501.750 30 5.829 7 
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2 907.221 3246.640 30 2.531 11 
3 907.221 3370.010 30 12.364 5 
4 907.221 3492.330 30 2.983 8 
5 907.221 3202.480 30 9.001 15 
6 907.221 3457.580 30 2.807 6 
7 907.221 3443.550 30 6.624 4 
8 907.221 3427.800 30 3.927 8 
1 794.224 3613.180 20 10.760 0 
2 794.224 3441.990 18 2.735 0 
3 794.224 3245.690 19 9.699 0 
4 794.224 3227.310 16 2.673 0 
5 794.224 3295.720 16 7.183 0 
6 794.224 3343.480 17 1.991 0 
7 794.224 3153.770 18 9.380 0 

14 

8 794.224 3333.340 18 2.545 0 
1 794.224 3939.700 30 5.264 18 
2 794.224 3857.040 30 2.083 15 
3 794.224 3740.190 30 4.755 19 
4 794.224 3698.240 30 2.738 19 
5 794.224 3774.590 30 5.096 19 
6 794.224 3811.090 30 1.820 15 
7 794.224 4049.450 30 5.190 13 

15 

8 794.224 3698.240 30 2.282 19 
1 800.524 2568.280 27 18.727 0 
2 800.524 2471.550 26 2.699 0 
3 800.524 2552.150 30 8.913 1 
4 800.524 2451.480 25 4.831 0 
5 800.524 2347.080 24 14.909 0 
6 800.524 2127.090 21 3.508 0 
7 800.524 2272.980 23 8.549 0 

16 

8 800.524 2034.830 17 7.013 0 
1 800.524 2457.930 30 13.766 15 
2 800.524 2560.210 30 2.373 11 
3 800.524 2365.720 30 7.390 18 
4 800.524 2537.120 30 3.739 19 
5 800.524 2600.020 30 15.075 10 
6 800.524 2280.950 30 3.439 19 
7 800.524 2217.760 30 8.430 19 

17 

8 800.524 2160.650 30 3.285 19 
1 1085.520 3049.400 23 19.680 0 
2 1085.520 2973.010 18 3.720 0 
3 1085.520 3207.350 26 30.103 0 
4 1085.520 2985.340 22 5.410 0 
5 1085.520 3181.620 25 13.316 0 
6 1085.520 3272.900 23 3.994 0 
7 1085.520 2970.620 19 15.479 0 

18 

8 1085.520 2905.650 20 4.976 0 
1 1085.520 4026.650 30 7.007 1 
2 1085.520 3777.830 27 2.774 0 

19 

3 1085.520 3921.510 30 7.001 1 
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4 1085.520 3609.900 29 4.639 0 
5 1085.520 3812.420 30 5.388 1 
6 1085.520 3575.040 30 2.657 4 
7 1085.520 3824.770 30 5.924 3 
8 1085.520 3737.370 30 2.751 4 
1 1067.650 3060.290 23 9.471 0 
2 1067.650 2732.910 23 1.792 0 
3 1067.650 3348.740 28 6.268 0 
4 1067.650 3047.680 25 2.649 0 
5 1067.650 3022.750 22 5.325 0 
6 1067.650 2831.400 23 1.353 0 
7 1067.650 3098.700 25 5.910 0 

20 

8 1067.650 2662.990 22 1.459 0 
1 1067.650 3128.740 30 9.231 9 
2 1067.650 3353.550 30 1.348 8 
3 1067.650 3450.760 30 6.326 7 
4 1067.650 3285.260 30 2.582 7 
5 1067.650 3386.310 30 5.417 7 
6 1067.650 3287.070 30 1.194 9 
7 1067.650 3428.970 30 5.396 6 

21 

8 1067.650 3385.630 30 1.466 6 
1 1377.820 4523.010 30 4.112 23 
2 1377.820 4624.700 30 0.917 24 
3 1377.820 4154.660 30 3.878 39 
4 1377.820 4267.130 30 1.143 37 
5 1377.820 4548.130 30 3.360 32 
6 1377.820 4728.460 30 1.439 10 
7 1377.820 4568.100 30 6.360 24 

22 

8 1377.820 4528.850 30 1.384 22 
1 680.152 3537.660 30 1.843 15 
2 680.152 3754.800 30 0.814 9 
3 680.152 3788.040 30 1.344 9 
4 680.152 3614.360 30 0.853 16 
5 680.152 3604.430 30 1.423 12 
6 680.152 3641.760 30 0.900 14 
7 680.152 3459.530 30 132.656 18 

23 

8 680.152 3690.060 30 0.791 14 
1 1297.970 2854.610 28 16.724 0 
2 1297.970 2842.980 27 1.964 0 
3 1297.970 2896.050 30 28.884 3 
4 1297.970 2960.210 30 2.673 0 
5 1297.970 2939.760 30 20.327 3 
6 1297.970 2875.420 30 1.960 3 
7 1297.970 3060.340 29 29.347 0 

24 

8 1297.970 2828.840 30 3.830 3 
1 1297.970 3167.000 30 17.179 2 
2 1297.970 3051.520 30 2.079 11 
3 1297.970 3033.590 30 28.988 12 
4 1297.970 3082.850 30 3.845 2 

25 

5 1297.970 3084.740 30 20.299 11 
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6 1297.970 2884.950 30 1.956 12 
7 1297.970 3105.170 30 29.271 11 
8 1297.970 3106.500 30 3.789 3 
1 1220.950 2134.210 23 96.893 0 
2 1220.950 2193.180 22 133.130 0 
3 1220.950 2193.180 22 130.224 0 
4 1220.950 2355.910 25 12.280 0 
5 1220.950 2739.790 27 62.590 0 
6 1220.950 2473.870 25 9.174 0 
7 1220.950 2226.520 22 99.228 0 

26 

8 1220.950 2598.650 29 11.805 0 
1 1220.950 3136.890 30 35.945 6 
2 1220.950 3342.570 30 1.105 6 
3 1220.950 3052.600 30 48.368 3 
4 1220.950 3038.170 28 3.620 0 
5 1220.950 3105.160 30 22.294 8 
6 1220.950 2987.350 30 2.838 7 
7 1220.950 3006.170 30 33.576 8 

27 

8 1220.950 2992.030 29 3.522 6 
1 3159.230 3925.670 30 79.156 21 
2 3159.230 4900.930 30 3.232 22 
3 3159.230 3932.880 30 67.332 20 
4 3159.230 4103.120 30 7.770 22 
5 3159.230 4167.330 30 21.266 21 
6 3159.230 4028.290 30 1.686 21 
7 3159.230 4253.630 30 18.631 17 

28 

8 3159.230 4047.090 30 3.314 17 
1 802.619 4176.090 27 17.404 0 
2 802.619 4133.420 30 2.730 0 
3 802.619 4183.210 30 13.265 3 
4 802.619 4205.750 30 3.296 0 
5 802.619 4236.640 30 3.441 2 
6 802.619 4236.640 30 1.899 0 
7 802.619 4262.760 30 13.048 2 

29 

8 802.619 4115.770 30 4.827 3 
1 410.932 4763.650 30 3.761 27 
2 410.932 4601.220 30 1.454 22 
3 410.932 4963.990 30 4.284 0 
4 410.932 4702.630 30 2.379 35 
5 410.932 4914.050 30 3.669 14 
6 410.932 4903.350 30 1.379 14 
7 410.932 4844.160 30 4.550 9 

30 

8 410.932 4723.930 30 2.195 22 
 

 

 

 

A
ll 

R
ig

ht
s R

es
er

ve
d 

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n 
- C

en
te

r  
of

 T
he

si
s D

ep
os

it



www.manaraa.com

Neighborhood structures definition  
  

93 

Appendix 3 – Time Windows for Problem Set 20 

 
Table 3. Time Windows for Problem Set 20 

Pickup Delivery Pickup 
Min Time 

Delivery 
Min Time 

Pickup 
Max Time 

Delivery 
Max Time 

Service 
Time 

Drop 
Time 

Available 
Time 

visit1 visit2 0 0 336 464 10 10 0 
visit3 visit4 0 0 350 433 10 10 0 
visit5 visit6 0 0 344 417 10 10 0 
visit7 visit8 0 0 321 415 10 10 0 
visit9 visit10 0 0 303 427 10 10 0 
visit11 visit12 0 0 301 469 10 10 0 
visit13 visit14 0 0 341 435 10 10 0 
visit15 visit16 0 0 328 426 10 10 0 
visit17 visit18 0 0 314 402 10 10 0 
visit19 visit20 0 0 311 415 10 10 0 
visit21 visit22 0 0 269 465 10 10 0 
visit23 visit24 0 0 245 408 10 10 0 
visit25 visit26 0 0 273 457 10 10 0 
visit27 visit28 0 0 200 400 10 10 0 
visit29 visit30 0 0 267 453 10 10 0 
visit31 visit32 0 0 260 324 10 10 0 
visit33 visit34 0 0 231 232 10 10 0 
visit35 visit36 0 0 208 357 10 10 0 
visit37 visit38 0 0 215 245 10 10 0 
visit39 visit40 0 0 198 347 10 10 0 
visit41 visit42 0 0 235 299 10 10 0 
visit43 visit44 0 0 192 304 10 10 0 
visit45 visit46 0 0 191 288 10 10 0 
visit47 visit48 0 0 271 211 10 10 0 
visit49 visit50 0 0 276 349 10 10 0 
visit51 visit52 0 0 244 290 10 10 0 
visit53 visit54 0 0 215 392 10 10 0 
visit55 visit56 0 0 247 293 10 10 0 
visit57 visit58 0 0 280 299 10 10 0 
visit59 visit60 0 0 276 323 10 10 0 
visit61 visit62 0 0 272 275 10 10 0 
visit63 visit64 0 0 273 281 10 10 0 
visit65 visit66 0 0 254 359 10 10 0 
visit67 visit68 0 0 255 284 10 10 0 
visit69 visit70 0 0 201 321 10 10 0 
visit71 visit72 0 0 258 302 10 10 0 
visit73 visit74 0 0 193 286 10 10 0 
visit75 visit76 0 0 263 316 10 10 0 
visit77 visit78 0 0 280 364 10 10 0 
visit79 visit80 0 0 218 239 10 10 0 
visit81 visit82 0 0 260 216 10 10 0 
visit83 visit84 5 25 55 379 10 10 5 
visit85 visit86 13 33 69 420 10 10 10 
visit87 visit88 14 29 115 409 10 10 10 
visit89 visit90 20 23 165 219 10 10 15 
visit91 visit92 19 20 102 169 10 10 19 
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visit93 visit94 31 50 178 425 10 10 30 
visit95 visit96 35 36 166 266 10 10 30 
visit97 visit98 36 47 152 209 10 10 34 
visit99 visit100 35 40 141 190 10 10 35 
visit101 visit102 41 58 207 269 10 10 36 
visit103 visit104 48 60 165 328 10 10 44 
visit105 visit106 54 73 174 186 10 10 49 
visit107 visit108 56 62 235 89 10 10 52 
visit109 visit110 57 71 126 198 10 10 54 
visit111 visit112 62 75 126 406 10 10 57 
visit113 visit114 59 59 144 211 10 10 57 
visit115 visit116 62 72 194 199 10 10 58 
visit117 visit118 63 66 210 310 10 10 59 
visit119 visit120 65 77 158 316 10 10 64 
visit121 visit122 67 67 193 281 10 10 67 
visit123 visit124 69 79 185 267 10 10 69 
visit125 visit126 76 86 142 432 10 10 71 
visit127 visit128 76 92 193 270 10 10 72 
visit129 visit130 77 80 173 355 10 10 75 
visit131 visit132 76 89 166 421 10 10 76 
visit133 visit134 83 84 231 392 10 10 81 
visit135 visit136 87 97 220 297 10 10 84 
visit137 visit138 96 106 247 238 10 10 96 
visit139 visit140 103 110 208 420 10 10 100 
visit141 visit142 104 105 239 256 10 10 104 
visit143 visit144 105 112 166 378 10 10 105 
visit145 visit146 106 116 199 279 10 10 105 
visit147 visit148 114 130 221 443 10 10 111 
visit149 visit150 120 132 131 458 10 10 118 
visit151 visit152 124 126 184 249 10 10 121 
visit153 visit154 128 135 190 438 10 10 126 
visit155 visit156 128 138 239 276 10 10 126 
visit157 visit158 130 147 236 470 10 10 130 
visit159 visit160 131 147 267 310 10 10 130 
visit161 visit162 138 153 249 349 10 10 136 
visit163 visit164 145 156 265 364 10 10 141 
visit165 visit166 145 153 245 345 10 10 142 
visit167 visit168 144 150 192 250 10 10 142 
visit169 visit170 150 170 312 272 10 10 145 
visit171 visit172 150 156 276 346 10 10 145 
visit173 visit174 149 163 298 317 10 10 147 
visit175 visit176 153 160 200 427 10 10 149 
visit177 visit178 151 171 266 396 10 10 150 
visit179 visit180 151 157 258 334 10 10 150 
visit181 visit182 153 160 314 395 10 10 152 
visit183 visit184 156 162 198 238 10 10 154 
visit185 visit186 161 162 267 388 10 10 157 
visit187 visit188 159 176 296 470 10 10 159 
visit189 visit190 163 181 237 284 10 10 161 
visit191 visit192 167 168 319 344 10 10 164 
visit193 visit194 169 176 209 271 10 10 164 
visit195 visit196 175 191 286 444 10 10 170 
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visit197 visit198 170 175 327 390 10 10 170 
visit199 visit200 177 193 249 310 10 10 177 
visit201 visit202 181 185 347 400 10 10 177 
visit203 visit204 178 187 195 312 10 10 178 
visit205 visit206 183 190 267 433 10 10 180 
visit207 visit208 185 203 335 315 10 10 180 
visit209 visit210 183 183 321 397 10 10 183 
visit211 visit212 188 195 288 385 10 10 187 
visit213 visit214 196 210 260 338 10 10 191 
visit215 visit216 199 200 348 412 10 10 195 
visit217 visit218 203 223 287 359 10 10 199 
visit219 visit220 199 201 368 409 10 10 199 

 

Table 4. Validation of the model based on problem set number 20, trial 6 
Vehicle1 Total cost = 148.569 Fixed cost = 0 Cost coefficients = Distance [1] 
 
Route: depot � visit57 �  visit33 � visit34 � visit65 � visit55 � visit58 � visit66 � visit56 � 
depot 
 
Time: depot [0], delay [0] � travel [23.0217], wait [0] � visit57 [23.0217], delay [10] � travel 
[13.8924], wait [0] � visit33 [46.9142], delay [10] � travel [14.8661], wait [0] � visit34 [71.7802], 
delay [10] � travel [41.7732], wait [0] � visit65 [123.553], delay [10] � travel [4.47214], wait [0] � 
visit55 [138.026], delay [10] � travel [1], wait [0] � visit58 [149.026], delay [10] � travel [11.1803], 
wait [0] � visit66 [170.206], delay [10] � travel [1], wait [0] � visit56 [181.206], delay [10] � travel 
[37.3631], wait [0] � depot [228.569] 
Transit Sum [228.569] 
 
Distance: depot [0] delay [0] � travel [23.0217], wait [0] � visit57 [23.0217], delay [0] � travel 
[13.8924], wait [0] � visit33 [36.9142], delay [0] � travel [14.8661], wait [0] � visit34 [51.7802], 
delay [0] � travel [41.7732], wait [0] � visit65 [93.5534], delay [0] � travel [4.47214], wait [0] � 
visit55 [98.0256], delay [0] � travel [1], wait [0] � visit58 [99.0256], delay [0] � travel [11.1803], 
wait [0] � visit66 [110.206], delay [0] � travel [1], wait [0] � visit56 [111.206] delay [0] � travel 
[37.3631], wait [0] � depot [148.569] 
Transit Sum 148.569 
 
Vehicle2 Total cost = 192.05 Fixed cost = 0 Cost coefficients = Distance [1] 
 
Route: depot � visit39 � visit1 � visit2 � visit71 � visit81 � visit119 � visit73 � visit74 � 
visit53 � visit82 � visit120 � visit205 � visit199 � visit200 � visit54 � visit72 � visit40 � 
visit206 � depot 
 
Time: depot [0], delay [0] � travel [18.6011], wait [0] � visit39 [18.6011], delay [10] � travel 
[6.40312], wait [0] � visit1 [35.0042], delay [10] � travel [18.6815], wait [0] � visit2 [63.6857], delay 
[10] � travel [1], wait [0] � visit71 [74.6857], delay [10] � travel [9], wait [0] � visit81 [93.6857], 
delay [10] � travel [19.4165], wait [0] � visit119 [123.102], delay [10] � travel [12.3693], wait [0] � 
visit73 [145.472..145.472], delay [10] � travel [2], wait [0..1e-010] � visit74 [157.472..157.472], delay 
[10] � travel [1.41421], wait [0..1e-010] �visit 53 [168.886], delay [10] � travel [11.4018], wait [0] � 
visit82 [190.288], delay [10] � travel [3.60555], wait [0] � visit120 [203.893], delay [10] � travel 
[5.38516], wait [0] �visit205 [219.278], delay [10] � travel [8.06226], wait [0] � visit199 [237.34], 
delay [10] �travel [2.23607], wait [0] � visit200 [249.577], delay [10] � travel [10.0499], wait [0] � 
visit54 [269.626], delay [10] � travel [10.4403], wait [0] � visit72 [290.067], delay [10] � travel 
[29.5296], wait [0] � visit40 [329.596], delay [10] � travel [13.4536], wait [0] � visit206 [353.05], 
delay [10] � travel [9], wait [0] � depot [372.05] 
Transit Sum [372.05] 
 
Distance: depot [0] delay [0] � travel [18.6011], wait [0] � visit39 [18.6011], delay [0] � travel 
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[6.40312], wait [0] � visit1 [25.0042], delay [0] � travel [18.6815], wait [0] � visit2 [43.6857], delay 
[0] � travel [1], wait [0] � visit71 [44.6857], delay [0] � travel [9], wait [0] � visit81 [53.6857], 
delay [0] � travel [19.4165], wait [0] � visit119 [73.1022], delay [0] � travel [12.3693], wait [0] � 
visit73 [85.4715], delay [0] � travel [2], wait [0] � visit74 [87.4715], delay [0] � travel [1.41421], 
wait [0] � visit53 [88.8858], delay [0] � travel [11.4018], wait [0] � visit82 [100.288], delay [0] � 
travel [3.60555], wait [0] � visit120 [103.893], delay [0] � travel [5.38516], wait [0] � visit205 
[109.278], delay [0] � travel [8.06226], wait [0] � visit199 [117.34], delay [0] � travel [2. 23607], 
wait [0] � visit200 [119.577], delay [0] � travel [10.0499], wait [0] � visit54 [129.626], delay [0] � 
travel [10.4403], wait [0] � visit72 [140.067], delay [0] � travel [29.5296], wait [0] � visit40 
[169.596], delay [0] � travel [13.4536], wait [0] � visit206 [183.05], delay [0] � travel [9], wait[0] � 
depot [192.05] 
Transit Sum [192.05] 
 
Vehicle3 Total cost = 130.477 Fixed cost = 0 Cost coefficients: Distance [1] 
 
Route: depot � visit63 � visit69 � visit70 � visit79 � visit61 � visit49 � visit50 � visit64 � 
visit62 � visit185 � visit193 � visit194 � visit80 � visit186 � depot 
 
Time: depot [0], delay [0] � travel [27.5862], wait [0] � visit63 [27.5862], delay [10] � travel 
[1.41421], wait [0] � visit69 [39.0004], delay [10] � travel [9.05539], wait [0] � visit70 [58.0558], 
delay [10] � travel [1.41421], wait [0] � visit79 [69.47], delay [10] � travel [9.21954], wait [0] � 
visit61 [88.6896], delay [10] � travel [5.83095], wait [0] � visit49 [104.521], delay [10] � travel 
[10.8167], wait [0] � visit50 [125.337], delay [10] � travel [5.09902], wait [0] � visit64 [140.436], 
delay [10] � travel [4], wait [0] � visit62 [154.436], delay [10] � travel [5.65685], wait [0] � visit185 
[170.093], delay [10] � travel [5], wait [0] � visit193 [185.093], delay [10] � travel [2], wait [0] � 
visit194 [197.093], delay [10] � travel [7], wait [0] � visit80 [214.093], delay [10] � travel [13.0384], 
wait [0] � visit186 [237.131], delay [10] � travel [23.3452], wait [0] � depot [270.477] 
Transit Sum [270.477] 
 
Distance: depot [0], delay [0] � travel [27.5862], wait [0] � visit63 [27.5862], delay [0] � travel 
[1.41421], wait [0] � visit69 [29.0004], delay [0] � travel [9.05539], wait [0] � visit70 [38.0558], 
delay [0] � travel [1.41421], wait [0] � visit79 [39.47], delay [0] � travel [9.21954], wait [0] � 
visit61 [48.6896], delay [0] � travel [5.83095], wait [0] � visit49 [54.5205], delay [0] � travel 
[10.8167], wait [0] � visit50 [65.3372] delay [0] � travel [5.09902], wait [0] � visit64 [70.4362], 
delay [0] � travel [4], wait [0] � visit62 [74.4362], delay [0] � travel [5.65685], wait [0] � visit185 
[80.0931], del ay [0] � travel [5], wait [0] � visit193 [85.0931], delay [0] � travel [2], wait [0] � 
visit194 [87.0931] delay [0] � travel [7], wait [0] � visit80 [94.0931], delay [0] � travel [13.0384], 
wait [0] � vi sit186 [107.131], delay [0] � travel [23.3452], wait [0] � depot [130.477] 
Transit Sum [130.477] 
 
Vehicle4 Total cost = 88.3736 Fixed cost = 0 Cost coefficients: Distance [1] 
 
Route: depot � visit13 � visit19 � visit9 � visit23 � visit17 � visit15 � visit14 � visit18 � 
visit20 � visit16 � visit10 � visit24� depot 
 
Time: depot [0], delay [0] � travel [22.0227], wait [0] � visit13 [22.0227], delay [10] � travel 
[3.16228], wait [0] � visit19 [35.185], delay [10] � travel [3.16228], wait [0] � visit9 [48.3473], delay 
[10] � travel [4.24264], wait [0] � visit23 [62.5899], delay [10] � travel [2.23607], wait [0] � visit17 
[74.826], delay [10] � travel [6], wait [0] � visit15 [90.826], delay [10] � travel [1.41421], wait [0] � 
visit14 [102.24], delay[10] � travel [2.23607], wait [0] � visit18 [114.476], delay [10] � travel 
[4.24264], wait [0] � visit20 [128.719], delay [10] � travel [2.82843], wait [0] � visit16 [141.547], 
delay [10] � travel [3.16228], wait [0] � visit10 [154.71], delay [10] � travel [10.8167], wait [0] � 
visit24 [175.526], delay [10] � travel [22.8473], wait [0] � depot [208.374] 
Transit Sum [208.374] 
 
Distance: depot [0], delay [0] � travel [22.0227], wait [0] � visit13 [22.0227], delay [0] �[4.24264], 
wait [0] � visit20 [48.7189], delay [0] � travel [2.82843], wait [0] � visit16 [51.5473], delay[0] � 
travel [3.16228], wait [0] � visit10 [54.7096], delay [0] � travel [10.8167], wait [0] � visit24 
[65.5263], delay [0] � travel [22.8473], wait [0] � depot [88.3736] 
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Transit Sum [88.3736] 
 
Vehicle5 Total cost = 208.919 Fixed cost = 0 Cost coefficients: Distance [1] 
 
Route: depot � visit29 � visit30 � visit41 � visit35 � visit7 � visit36 � visit67 � visit68 � 
visit31 � visit43 � visit42 � visit44� visit5 � visit32 � visit215 � visit216 � visit6 � visit8 � 
depot 
 
Time: depot [0], delay [0] � travel [7.07107], wait [0] � visit29 [7.07107], delay [10] � travel [1], 
wait [0] � visit30 [18.0711], delay [10] � travel [4], wait [0] � visit41 [32.0711], delay [10] � travel 
[10], wait [0] � visit35 [52.0711], delay [10] � travel [23], wait [0] � visit7 [85.0711], delay [10] � 
travel [2], wait[0] � visit36 [97.0711], delay [10] � travel [16.9706], wait [0] � visit67 [124.042], 
delay [10] � travel [8], wait [0] � visit68 [142.042], delay [10] � travel [4.24264], wait [0] � visit31 
[156.284], delay [10] � travel [19.105], wait [0] � visit43 [185.389], delay [10] � travel [6.40312], 
wait [0] � visit42 [201.792], delay [10] � travel [12.1655], wait [0] � visit44 [223.958], delay [10] � 
travel [12.0416], wait [0] � visit5 [245.999], delay [10] � travel [10], wait [0] -> visit32 [265.999], 
delay [10] � travel [18.1108], wait[0] � visit215 [294.11], delay [10] � travel [3.16228], wait [0] � 
visit216 [307.273], delay [10] � travel[9.84886], wait [0] � visit6 [327.121], delay [10] � travel 
[18.0278], wait [0] � visit8 [355.149], delay [10] � travel [23.7697], wait [0] � depot [388.919] 
Transit Sum [388.919] 
 
Distance: depot [0], delay [0] � travel [7.07107], wait [0] � visit29 [7.07107], delay [0] � travel [1], 
wait [0] � visit30 [8.07107], delay [0] � travel [4], wait [0] � visit41 [12.0711], delay [0] � travel 
[10], wait [0] � visit35 [22.0711] delay [0] � travel [23], wait [0] � visit7 [45.0711], delay [0] � 
travel [2], wait [0] � visit36 [47.0711], delay [0] � travel [16.9706], wait [0] �> visit67 [64.0416], 
delay [0] � travel [8], wait [0] � visit68 [72.0416], delay [0] � travel [4.24264], wait [0] � visit31 
[76.2843], delay [0] � travel [19.105], wait [0] � visit43 [95.3892], delay [0] � travel [6.40312], wait 
[0] � visit42 [101.792] delay [0] � travel [12.1655], wait [0] � visit44 [113. 958], delay [0] � travel 
[12.0416], wait [0] � visit5 [125.999], delay [0] � travel [10], wait [0] � visit32 [135.999], delay [0] 
� travel [18.1108], wait [0] � visit215 [154.11], delay [0] � travel [3.16228], wait [0] � visit216 
[157.273], delay [0] -> travel [9.84886], wait [0] � visit6 [167.121], delay [0] � travel [18.0278], wait 
[0] � visit8 [185.149] delay [0] � travel [23.7697], wait [0] � depot 
[208.919] 
Transit Sum [208.919] 
 
Vehicle6 Total cost = 108.338 Fixed cost = 0 Cost coefficients: Distance [1] 
 
Route: depot � visit83 � visit89 � visit99 � visit85 � visit109 � visit111 � visit110 � visit101 � 
visit100 � visit102 � visit93 � visit86 � visit94 � visit90 � visit84 � visit112 � depot 
 
Time: depot [0], delay [0] � travel [7.61577], wait [0] � visit83 [7.61577], delay [10] � travel 
[6.08276], wait [0] � visit89 [23.6985], delay [10] � travel [9], wait [0] � visit99 [42.6985], delay [10] 
� travel [6], wait [0] � visit85 [58.6985], delay [10] � travel [5.83095], wait [0] � visit109 [74.5295], 
delay [10] �> travel [5.09902], wait [0] � visit111 [89.6285], delay [10] � travel [4.12311], wait [0] 
� visit110 [103.752], delay [10] � travel [3.16228], wait [0] � visit101 [116.914], delay [10] � travel 
[7], wait [0] � visit100 [133.914], delay [10] � travel [4], wait [0] � visit102 [147.914], delay [10] � 
travel [2], wait [0] � visit93 [159.914], delay [10] � travel [4], wait [0] � visit86 [173.914], delay [10] 
� travel [0], wait [0] � visit94 [183.914], delay [10] � travel [17.72], wait [0] � visit90 [211.634], 
delay [10] � travel [2.23607], wait [0] -> visit84 [223.87], delay [10] � travel [6.08276], wait [0] � 
visit112 [239.953], delay [10] � travel [18.3848], wait [0] � depot [268.338] 
Transit Sum [268.338] 
 
Distance: depot [0], delay [0] � travel [7.61577], wait [0] � visit83 [7.61577], delay [0] � travel 
[6.08276], wait [0] � visit89 [13.6985] delay [0] � travel [9], wait [0] � visit99 [22.6985], delay [0] � 
travel [6], wait [0] � visit85 [28.6985], delay [0] � travel [5.83095], wait [0] � visit109 [34.5295], 
delay [0] � travel [5.09902], wait [0] � visit111 [39.6285], delay [0] � travel [4.12311], wait [0] � 
visit110 [43.7516], delay [0] � travel [3.16228], wait [0] � visit101 [46.9139], delay [0] � travel [7], 
wait[0] � visit100 [53.9139], delay [0] � travel [4], wait [0] � visit102 [57.9139], delay [0] � travel 
[2], wait [0] � visit93 [59.9139], delay [0] � travel [4], wait [0] � visit86 [63.9139], delay [0] � 
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travel [0], wait [0] � visit94 [63.9139] delay [0] � travel [17.72], wait [0] � visit90 [81.6339] delay 
[0] � travel [2.23607], wait [0] � visit84 [83.87], delay [0] � travel [6.08276], wait [0] -> visit112 
[89.9528] delay [0] �  travel [18.3848], wait [0] � depot [108.338] 
Transit Sum [108.338] 
 
Vehicle7 Total cost = 93.8076 Fixed cost = 0 Cost coefficients: Distance [1] 
 
Route: depot � visit91 � visit11 � visit21 � visit25 � visit26 � visit12 � visit22 � visit131 � 
visit92 � visit179 � visit180 � visit132 � depot 
 
Time: depot [0], delay [0] � travel [19.9249], wait [0] � visit91 [19.9249], delay [10] � travel 
[11.4018], wait [0] � visit11 [41.3266], delay [10] � travel [1.41421], wait [0] � visit21 [52.7408], 
delay [10] � travel [2.23607], wait [0] � visit25 [64.9769], delay [10] � travel [1], wait [0] � visit26 
[75.9769], delay [10] � travel [9.05539], wait [0] � visit12 [95.0323], delay [10] � travel [4.47214], 
wait [0] � visit22 [109.504], delay [10] � travel [6.40312], wait [0] � visit131 [125.908], delay [10] 
� travel [12.8062], wait [0] � visit92 [148.714], delay [10] � travel [8.544], wait [0] � visit179 
[167.258], delay [10] � travel [4], wait [0] � visit180 [181.258], delay [10] � travel [3.60555], wait 
[0] � visit132 [194.863], delay [10] � travel [8.94427], wait [0] � depot [213.808] 
Transit Sum [213.808] 
 
Distance: depot [0], delay [0] � travel [19.9249], wait [0] � visit91 [19.9249], delay [0] � travel 
[11.4018], wait [0] � visit11 [31.3266], delay [0] � travel [1.41421], wait [0] � visit21 [32.7408], 
delay [0] � travel [2.23607], wait [0] � visit25 [34.9769], delay [0] � travel [1], wait [0] � visit26 
[35.9769], delay [0] � travel [9.05539], wait [0] � visit12 [45.0323], delay [0] � travel [4.47214], wait 
[0] � visit22 [49.5044], delay [0] � travel [6.40312], wait [0] � visit131 [55.9075], delay [0] � travel 
[12.8062], wait [0] � visit92 [68.7138], delay [0� travel [8.544], wait [0] � visit179 
[77.2578], de lay [0] � travel [4], wait [0] � visit180 [81.2578], delay [0] � travel [3.60555], wait [0] 
� visit132 [84.8633] delay [0]� travel [8.94427], wait [0] � depot [93.8076] 
Transit Sum 93.8076 
 
Vehicle8 Total cost = 167.074 Fixed cost = 0 Cost coefficients: Distance [1] 
 
Route: depot � visit103 � visit95 � visit127 � visit115 � visit116 � visit167 � visit96 � visit104 
� visit168 � visit128 � depot 
 
Time: depot [0], delay [0] � travel [12.083], wait [0] � visit103 [48], delay [10] � travel [4.12311], 
wait [0] � visit95 [62.1231], delay [10] � travel [26.9258], wait [0] � visit127 [99.0489], delay [10] 
� travel [18.7883], wait [0] � visit115 [127.837], delay [10] � travel [5], wait [0] � visit116 
[142.837], delay [10] � travel[16.5529], wait [0] � visit167 [169.39], delay [10] � travel [16.9706], 
wait [0] � visit96 [196.361], delay [10] � travel [2.23607], wait [0] � visit104 [208.597], delay [10] 
� travel [16.7631], wait [0] � visit168 [235.36], delay [10] � travel [22.1359], wait [0] � visit128 
[267.496], delay [10] � travel [25.4951], wait [0] � depot [302.991] 
Transit Sum 302.991 
 
Distance: depot [0], delay [0] � travel [12.083], wait [0] � visit103 [12.083] delay [0] � travel 
[4.12311], wait [0] � visit95 [16.2062], delay [0] � travel [26.9258], wait [0] � visit127 [43.132], 
delay [0] � travel [18.7883], wait [0] � visit115 [61.9203], delay [0] � travel [5], wait [0] � visit116 
[66.9203], delay [0] � travel [16.5529], wait [0] � visit167 [83.4732], delay [0] � travel [16.9706], 
wait [0] � visit96 [100.444], delay [0] � travel [2.23607], wait [0] � visit104 [102.68], delay [0] � 
travel [16.7631], wait [0] � visit168 [119.443] delay [0] � travel [22.1359], wait [0] � visit128 
[141.579] delay [0] � travel [25.4951], wait [0] � depot [167.074] 
Transit Sum [167.074] 
 
Vehicle9 Total cost = 202.768 Fixed cost = 0 Cost coefficients: Distance [1] 
 
Route: depot � visit107 � visit108 � visit171 � visit173 � visit175 � visit172 � visit219 � 
visit177 � visit187 � visit188 � visit174� visit176 � visit3 � visit220 � visit178 � visit4 � 
depot 
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Time: depot [0], delay [0] � travel [20.6155], wait [0] � visit107 [56], delay [10] � travel [4.47214], 
wait [0] � visit108 [70.4721], delay [10] � travel [12.53], wait [56.9979] � visit171 [150], delay [10] 
� travel [3], wait [0] � visit173 [163], delay [10] � travel [5.65685], wait [0] � visit175 [178.657], 
delay [10] � travel [2.23607], wait [0] � visit172 [190.893], delay [10] � travel [10.4403], wait [0] � 
visit219 [211.333], delay [10] � travel[25.0799], wait [0] � visit177 [246.413], delay [10] � travel 
[4.47214], wait [0] � visit187 [260.885], del ay [10] � travel [3.60555], wait [0] � visit188 [274.491], 
delay [10] � travel [14.8661], wait [0] � visit174 [299. 357], delay [10] � travel [12.083], wait [0] � 
visit176 [321.44], delay [10] � travel [5.38516], wait [0] � visit3 [336.825], delay [10] � travel 
[21.2132], wait [0] � visit220 [368.038], delay [10] � travel [6.08276], wait [0] � visit178 [384.121], 
delay [10] � travel [17.0294], wait [0] � visit4 [411.15], delay [10] � travel [34], wait [0] � depot 
[455.15] 
Transit Sum 455.15 
 
Distance: depot [0] delay [0] � travel [20.6155], wait [0] � visit107 [20.6155], delay [0] � travel 
[4.47214], wait [0] � visit108 [25.0877], delay [0] � travel [12.53], wait [0] � visit171 [37.6176], 
delay [0] � travel [3], wait [0] � visit173 [40.6176], delay [0] � travel [5.65685], wait [0] � visit175 
[46.2745], delay [0] � travel [2.23607], wait [0] � visit172 [48.5106], delay [0] � travel [10.4403], 
wait [0] � visit219 [58.9509], delay [0] � travel [25.0799], wait [0] � visit177 [84.0307], delay[0] � 
travel [4.47214], wait [0] � visit187 [88.5029], delay [0] � travel [3.60555], wait [0] � visit188 
[92.1084] delay [0] � travel [14.8661], wait [0] � visit174 [106.974], delay [0] � travel [12.083], wait 
[0] � visit176 [119.058], delay [0] � travel [5.38516], wait [0] � visit3 [124.443], delay [0] � travel 
[21.2132], wait [0] � visit220 [145.656], delay [0] � travel [6.08276], 
wait [0] � visit178 [151.739], delay [0] � travel [17.0294], wait [0] � visit4 [168.768], delay [0] � 
travel [34], wait [0] � depot [202.768] 
Transit Sum 202.768 
 
Vehicle10 Total cost = 21.6734 Fixed cost = 0 Cost coefficients: Distance [1] 
 
Route: depot � visit97 � visit98 � depot 
Time: depot [0], delay [0] � travel [6], wait [30] � visit97 [36], delay [10] � travel [8.60233], wait [0] 
� visit98 [54.6023], delay [10] � travel [7.07107], wait [0] � depot [71.6734] 
Transit Sum 71.6734 
 
Distance: depot [0] delay [0] � travel [6], wait [0] � visit97 [6], delay [0] � travel [8.60233], wait [0] 
� visit98 [14.6023], delay [0] � travel [7.07107], wait [0] � depot [21.6734], delay [0] � travel [0], 
wait [0] 
Transit Sum [21.6734] 
 
Vehicle11 Total cost = 140.275 Fixed cost = 0 Cost coefficients: Distance [1] 
 
Route: depot � visit117 � visit45 � visit27 � visit145 � visit143 � visit141 � visit144 � visit118 
� visit146 � visit142 � visit46 � visit28 � depot 
 
Time: depot [0], delay [0..47.1886] � travel [15.8114], wait [0] � visit117 [63], delay [10] � travel 
[12.2066], wait [0] � visit45 [85.2066], delay [10] � travel [22.1359], wait [0] � visit27 [117.342], 
delay [10] � travel [14.3178], wait [0] � visit145 [141.66], delay [10] � travel [9], wait [0] � visit143 
[160.66], delay [10] � travel [4.12311], wait [0] � visit141 [174.783], delay [10] � travel [6.08276], 
wait [0] � visit144 [190.866], delay [10] � travel [5.09902], wait [0] � visit118 [205.965], delay [10] 
� travel [1], wait [0] � visit146 [216.965], delay [10] � travel [1], wait [0] � visit142 [227.965], 
delay [10] -> travel [18.2483], wait [0] � visit46 [256.213], delay [10] � travel [12.6491], wait [0] � 
visit28 [278.863], delay [10] � travel [18.6011], wait [0] � depot [307.464] 
Transit Sum [307.464] 
 
Distance: depot [0], delay [0] � travel [15.8114], wait [0] � visit117 [15.8114], delay [0] � travel 
[12.2066], wait [0] � visit45 [28.0179], delay [0] � travel [22.1359], wait [0] � visit27 [50.1539], 
delay [0] � travel [14.3178], wait [0] � visit145 [64.4717], delay [0] � travel [9], wait [0] � visit143 
[73.4717], delay [0] � travel [4.12311], wait [0] � visit141 [77.5948], delay [0] � travel [6.08276], 
wait [0] � visit144 [83.6776], delay [0] � travel [5.09902], wait [0] � visit118 [88.7766], delay [0] � 
travel [1], wait [0] � visit146 [89.7766], delay [0] � travel [1], wait [0] � visit142 [90.7766] delay[0] 
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� travel [18.2483], wait [0] � visit46 [109.025], delay [0] � travel [12.6491], wait [0] � visit28 
[121.674], delay [0] � travel [18.6011], wait [0] � depot [140.275] 
Transit Sum [140.275] 
 
Vehicle12 Total cost = 122.024 Fixed cost = 0 Cost coefficients: Distance [1] 
 
Route: depot � visit105 � visit87 � visit129 � visit37 � visit113 � visit114 � visit106 � visit88 
� visit130 � visit38 � depot 
 
Time: depot [0], delay [0] � travel [26.2488], wait [0] -> visit105 [54], delay [10] � travel [1], wait [0] 
� visit87 [65], delay [10] � travel [12.083], wait [0] � visit129 [87.083], delay [10] � travel [1], wait 
[0] � vi sit37 [98.083], delay [10] � travel [8], wait [0] � visit113 [116.083], delay [10] � travel 
[10.2956], wait [0] � visit114 [136.379], delay [10] � travel [8.94427], wait [0] � visit106 [155.323], 
delay [10] � travel[9.05539], wait [0] � visit88 [174.378], delay [10] � travel [21.1896], wait [0] � 
visit130 [205.568] , delay [10] � travel [24.2074], wait [0] � visit38 [239.775], delay [10] � travel [0], 
wait [0] � depot [249.775] 
Transit Sum [249.775] 
 
 
Distance: depot [0] delay [0] � travel [26.2488], wait [0] � visit105 [26.2488], delay [0] �  travel [1], 
wait [0] � visit87 [27.2488], delay [0] � travel [12.083], wait [0] � visit129 [39.3319], delay [0] � 
travel [1], wait [0] � visit37 [40.3319], delay [0] � travel [8], wait [0] � visit113 [48.3319], delay [0] 
� travel [10.2956], wait [0] � visit114 [58.6275], delay [0] � travel [8.94427], wait [0] � visit106 
[67.5718], delay [0] � travel [9.05539], wait [0] � visit88 [76.6271] delay [0� travel [21.1896], wait 
[0] � visit130 [97.8168], delay [0] � travel [24.2074], wait [0] � visit38 [122.024], delay [0] � travel 
[0], wait [0] � depot [122.024] 
Transit Sum [122.024] 
 
Vehicle13 Total cost = 202.49 Fixed cost = 0 Cost coefficients: Distance [1] 
 
Route: depot � visit121 � visit123 � visit122 � visit125 � visit135 � visit133 � visit134 � 
visit124 � visit136 � visit126 � depot 
 
Time: depot [0], delay [0] � travel [48.8365], wait [18.1635] � visit121 [67], delay [10] � travel 
[3.16228], wait [0] � visit123 [80.1623], delay [10] � travel [24.1868], wait [0] � visit122 [114.349], 
delay [10] � travel [16.1555], wait [0] � visit125 [140.505], delay [10] � travel [22.1359], wait [0] � 
visit135 [172.64], delay [10] � travel [16.5529], wait [0] � visit133 [199.193], delay [10] � travel 
[10.4403], wait [0] � visit134 [219.634], delay [10] � travel [15], wait [0] � visit124 [244.634], delay 
[10] � travel [13.4536], wait [0] � visit136 [268.087], delay [10] � travel [4.12311], wait [0] � 
visit126 [282.21], delay [10] � travel [28.4429], wait [0] � depot [320.653], delay [0] � travel [0], 
wait [0] 
Transit Sum [320.653] 
 
Distance: depot [0], delay [0] � travel [48.8365], wait [0] � visit121 [48.8365], delay [0] � travel 
[3.16228], wait [0] � visit123 [51.9987], delay [0] � travel [24.1868], wait [0] � visit122 [76.1855], 
delay [0] � travel [16.1555], wait [0] � visit125 [92.341], delay [0] � travel [22.1359], wait [0] � 
visit135 [114.477], delay [0] � travel [16.5529], wait [0] � visit133 [131.03], delay [0] � travel 
[10.4403], wait [0] � visit134 [141.47], delay [0] � travel [15], wait [0] � visit124 [156.47], delay [0] 
� travel [13.4536], wait [0] � visit136 [169.924], delay [0] � travel [4.12311], wait [0] � visit126 
[174.047] delay [0] � travel [28.4429], wait [0] � depot [202.49], delay [0] � 
Transit Sum [202.49] 
 
Vehicle14 Total cost = 90.7877 Fixed cost = 0 Cost coefficients: Distance [1] 
 
Route: depot � visit51 � visit59 � visit52 � visit60 � depot 
 
Time: depot [0], delay [0] � travel [36.7151], wait [0] � visit51 [36.7151], delay [10] � travel 
[2.23607], wait [0] � visit59 [48.9512], delay [10] � travel [10.8167], wait [0] � visit52 [69.7678], 
delay [10] � travel [19.9249], wait [0] � visit60 [99.6927], delay [10] � travel [21.095], wait [0] � 
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depot [130.788] 
Transit Sum [130.788] 
 
Distance: depot [0], delay [0] � travel [36.7151], wait [0] � visit51 [36.7151] delay [0] � travel 
[2.23607], wait [0] � visit59 [38.9512], delay [0] � travel [10.8167], wait [0] � visit52 [49.7678], 
delay [0] � travel [19.9249], wait [0] � visit60 [69.6927], delay [0] � travel [21.095], wait [0] �  
depot [90.7877], delay [0] �  travel [0], wait [0] 
Transit Sum [90.7877] 
 
Vehicle15 Total cost = 72.7513 Fixed cost = 0 Cost coefficients: Distance [1] 
 
Route: depot � visit149 � visit159 � visit155 � visit151 � visit139 � visit153 � visit154 � 
visit150 � visit156 � visit152 � visit160 � visit140 � depot 
 
Time: depot [0], delay [0] � travel [21.3776], wait [0] � visit149 [120] delay [10] � travel [7.2111], 
wait [0] � visit159 [137.211], delay [10] � travel [1], wait [0] � visit155 [148.211], delay [10] � 
travel [0], wait [0] � visit151 [158.211], delay [10] � travel [3], wait [0] � visit139 [171.211], delay 
[10] � travel [5], wait [0] � visit153 [186.211], delay [10] � travel [3.60555], wait [0] � visit154 
[199.817], delay [10] � travel [4.12311], wait [0] � visit150 [213.94], delay [10] � travel [2.82843], 
wait [0] � visit156 [226.768], delay [10] � travel [3.60555], wait [0] � visit152 [240.374], delay [10] 
� travel [4], wait [0] � visit160 [254.374], delay [10] � travel [1], wait [0] � visit140 [265.374], 
delay [10] � travel [16], wait [0] � depot [291.374 
Transit Sum [291.374] 
 
Distance: depot [0], delay [0] � travel [21.3776], wait [0] � visit149 [21.3776], delay [0] � travel 
[7.2111], wait [0] � visit159 [28.5887], delay [0] � travel [1], wait [0] � visit155 [29.5887], delay [0] 
� travel [0], wait [0] � visit151 [29.5887], delay [0] � travel [3], wait [0] � visit139 [32.5887], delay 
[0] � travel [5], wait [0] � visit153 [37.5887], delay [0] � travel [3.60555], wait [0] � visit154 
[41.1942], delay [0] � travel [4.12311], wait [0] � visit150 [45.3173], delay [0] � travel [2.82843], 
wait [0] � visit156 [48.1457], delay [0] � travel [3.60555], wait [0] � visit152 [51.7513], delay [0] � 
travel [4], wait [0] � visit160 [55.7513], delay [0] � travel [1], wait [0] � visit140 [56.7513], delay [0] 
� travel [16], wait [0] � depot [72.7513] 
Transit Sum [72.7513] 
 
Vehicle16 Total cost = 42.4945 Fixed cost = 0 Cost coefficients: Distance [1] 
 
Route: depot � visit147 � visit137 � visit148 � visit138 � depot 
 
Time: depot [0], delay [0] � travel [19.0263], wait [94.9737] � visit147 [114], delay [10] � travel 
[5.65685], wait [0] � visit137 [129.657], delay [10] � travel [0], wait [0] � visit148 [139.657], delay 
[10] � travel [2], wait [0] � visit138 [151.657], delay [10] � travel [15.8114], wait [0] � depot 
[177.468] 
Transit Sum [177.468] 
 
Distance: depot [0], delay [0] � travel [19.0263], wait [0] � visit147 [19.0263], delay [0] �  travel 
[5.65685], wait [0] � visit137 [24.6832], delay [0] � travel [0], wait [0] � visit148 [24.6832], delay [0] 
� travel [2], wait [0] � visit138 [26.6832], delay [0] � travel [15.8114], wait [0] � depot [42.4945] 
Transit Sum [42.4945] 
 
Vehicle17 Total cost = 48.4243 Fixed cost = 0 Cost coefficients: Distance [1] 
 
Route: depot � visit161 � visit162 � depot 
 
Distance: depot [0], delay [0] � travel [24.0832], wait [0] � visit161 [24.0832], delay [0] � travel 
[8.06226], wait [0] � visit162 [32.1454], delay [0] � travel [16.2788], wait [0] � depot [48.4243] 
Transit Sum [48.4243] 
 
Vehicle18 Total cost = 127.933 Fixed cost = 0 Cost coefficients: Distance [1] 
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Route: depot � visit163 � visit47 � visit164 � visit48 � visit207 � visit208 � depot 
 
Time: depot [0], delay [0] � travel [24.3311], wait [0] � visit163 [145], delay [10] � travel [2], wait 
[0] �> visit47 [157], delay [10] � travel [13.3417], wait [0] � visit164 [180.342], delay [10] � travel 
[2.23607], wait [0] � visit48 [192.578], delay [10] � travel [31.0161], wait [0] � visit207 [233.594], 
delay [10] � travel [42.2019], wait [0] � visit208 [285.796], delay [10] � travel [12.8062], wait [0] � 
depot [308.602] 
Transit Sum [308.602] 
 
Distance: depot [0], delay [0] � travel [24.3311], wait [0] � visit163 [24.3311], delay [0] � travel [2], 
wait [0] � visit47 [26.3311], delay [0] � travel [13.3417], wait [0] � visit164 [39.6727], delay [0] � 
travel [2.23607], wait [0] � visit48 [41.9088], delay [0] � travel [31.0161], wait [0] � visit207 
[72.9249], delay [0] � travel [42.2019], wait [0] � visit208 [115.127], delay [0] � travel [12.8062], 
wait [0] � depot [127.933] 
Transit Sum [127.933] 
 
Vehicle19 Total cost = 138.792 Fixed cost = 0 Cost coefficients: Distance [1] 
 
Route: depot � visit165 � visit189 � visit169 � visit170 � visit190 � visit166 � depot 
 
Time: depot [0], delay [0] � travel [7.61577], wait [137.384] � visit165 [145], delay [10] � travel 
[39.4081], wait [0] � visit189 [194.408], delay [10] � travel [4.12311], wait [0] � visit169 [208.531], 
delay [10] � travel [11.4018], wait [0] � visit170 [229.933], delay [10] � travel [34.0588], wait [0] � 
visit190 [273.992], de lay [10] � travel [30.4795], wait [0] � visit166 [314.471], delay [10] � travel 
[11.7047], wait [0] � depot [336.176], delay [0] � travel [0], wait [0] 
Transit Sum [336.176] 
 
Distance: depot [0], delay [0] � travel [7.61577], wait [0] � visit165 [7.61577], delay [0] � travel 
[39.4081], wait [0] � visit189 [47.0239], delay [0] � travel [4.12311], wait [0] � visit169 [51.147], 
delay [0] � travel [11.4018], wait [0] � visit170 [62.5488], delay [0] � travel [34.0588], wait [0] � 
visit190 [96.6075], delay [0] � travel [30.4795], wait [0] � visit166 [127.087], delay [0] � travel 
[11.7047], wait [0] � depot [138.792] 
Transit Sum [138.792] 
 
Vehicle20 Total cost = 102.149 Fixed cost = 0 Cost coefficients: Distance [1] 
 
Route: depot � visit183 � visit181 � visit182 � visit184 � depot 
 
Time: depot [0], delay [0] � travel [40.3113], wait [115.689] � visit183 [156], delay [10] � travel 
[34.0147], wait [0] � visit181 [200.015], delay [10] � travel [13.4536], wait [0] � visit182 [223.468], 
delay [10] �  travel [2], wait [0] � visit184 [235.468], delay [10] � travel [12.3693], wait [0] � depot 
[257.838] 
Transit Sum [257.838] 
 
Distance: depot [0], delay [0] � travel [40.3113], wait [0] � visit183 [40.3113] delay [0] � travel 
[34.0147], wait [0] � visit181 [74.326], delay [0] �  travel [13.4536], wait [0] � visit182 [87.7796], 
delay [0] � travel [2], wait [0] � visit184 [89.7796], delay [0] � travel [12.3693], wait [0] �  depot 
[102.149], delay [0] �  travel [0], wait [0] 
Transit Sum [102.149] 
 
Vehicle21 Total cost = 111.046 Fixed cost = 0 Cost coefficients: Distance [1] 
 
Route: depot �  visit195 �  visit191 �  visit201 �  visit197 �  visit75 �  visit198 �  visit196 �  
visit202 �  visit192 �  visit76 �  depot 
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Time: depot [0], delay [0] � travel [39.8497], wait [135.15] � visit195 [175], delay [10] � travel 
[3.16228], wait [0] � visit191 [188.162], delay [10] � travel [5], wait [0] � visit201 [203.162], delay 
[10] � travel [7.61577], wait [0] � visit197 [220.778], delay [10] � travel [4.12311], wait [0] � 
visit75 [234.901], delay [10] � travel [7.2111], wait [0] � visit198 [252.112], delay [10] � travel [2], 
wait [0] � visit196 [264.112], delay [10] � travel [2], wait [0] � visit202 [276.112], delay [10] � 
travel [4], wait [0] � visit192 [290.112], delay [10] � travel [1.41421], wait [0] � 
visit76 [301.526], delay [10] � travel [34.6699], wait [0] � depot [346.196] 
Transit Sum [346.196] 
 
Distance: depot [0], delay [0] �  travel [39.8497], wait [0] �  visit195 [39.8497], delay [0] � travel 
[3.16228], wait [0] � visit191 [43.012], delay [0] � travel [5], wait [0] � visit201 [48.012], delay [0] 
� travel [7.61577], wait [0] � visit197 [55.6278], delay [0] � travel [4.12311], wait [0] � visit75 
[59.7509], delay [0] � travel [7.2111], wait [0] � visit198 [66.962], delay [0] � travel [2], wait [0] � 
visit196 [68.962], delay [0] � travel [2], wait [0] � visit202 [70.962], delay [0] � travel [4], wait [0] 
� visit192 [74.962], delay [0] � travel [1.41421], wait [0] � visit76 [76.3762], delay [0] � travel 
[34.6699], wait [0] � depot [111.046] 
Transit Sum [111.046] 
 
Vehicle22 Total cost = 117.463 Fixed cost = 0 Cost coefficients: Distance [1] 
 
Route: depot � visit203 � visit77 � visit204 � visit78 � visit217 � visit218 � depot 
 
Time: depot [0], delay [0] � travel [34], wait [144] � visit203 [178], delay [10] � travel [5], wait [0] 
� visit77 [193], delay [10] � travel [5], wait [0] � visit204 [208], delay [10] � travel [9.84886], wait 
[0] � visit78 [227.849], delay [10] � travel [13.6015], wait [0] � visit217 [251.45], delay [10] � 
travel [18.2483], wait [0] � visit218 [279.699], delay [10] � travel [31.7648], wait [0] � depot 
[321.463] 
Transit Sum [321.463] 
 
Distance: depot [0], delay [0] � travel [34], wait [0] � visit203 [34], delay [0..1e-010] � travel [5], 
wait [0] � visit77 [39], delay [0] � travel [5], wait [0] � visit204 [44], delay [0] � travel[9.84886], 
wait [0] � visit78 [53.8489], delay [0] � travel [13.6015], wait [0] � visit217 [67.4503], delay[0] � 
travel [18.2483], wait [0] � visit218 [85.6986], delay [0] � travel [31.7648], wait [0] � depot 
[117.463] 
Transit Sum [117.463] 
 
Vehicle23 Total cost = 152.724 Fixed cost = 0 Cost coefficients: Distance [1] 
 
Route: depot � visit209 � visit213 � visit157 � visit211 � visit210 � visit214 � visit212 � 
visit158 � depot 
 
Time: depot [0], delay [0] � travel [12.2066], wait [170.793] � visit209 [183], delay [10] � travel 
[8.24621], wait [0] � visit213 [201.246], delay [10] � travel [12.3693], wait [0] � visit157 [223.616], 
delay [10] � travel [11.6619], wait [0] � visit211 [245.277], delay [10] � travel [32.28], wait [0] � 
visit210 [287.557] , delay [10] � travel [16.2788], wait [0] � visit214 [313.836], delay [10] � travel 
[18.1108], wait [0] � visit 212 [341.947], delay [10] � travel [19.2094], wait [0] � visit158 [371.156], 
delay [10] � travel [22.3607], wait[0] � depot [403.517] 
Transit Sum [403.517] 
 
Distance: depot [0], delay [0] � travel [12.2066], wait [0] � visit209 [12.2066], delay [0] � travel [8. 
24621], wait [0] � visit213 [20.4528], delay [0] � travel [12.3693], wait [0] � visit157 [32.8221], 
delay [0] � travel [11.6619], wait [0] � visit211 [44.484], delay [0] � travel [32.28], wait [0] � 
visit210 [76.764], delay [0] � travel [16.2788], wait [0] � visit214 [93.0428], delay [0] � travel 
[18.1108], wait [0] � visit212 [111.154], delay [0] �  travel [19.2094], wait [0] � visit158 [130.363], 
delay [0] � travel [22.3607], wait [0] � depot [152.724] 
Transit Sum [152.724] 
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